906 resultados para statistical techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: •Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. •Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. •Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We defined a new statistical fluid registration method with Lagrangian mechanics. Although several authors have suggested that empirical statistics on brain variation should be incorporated into the registration problem, few algorithms have included this information and instead use regularizers that guarantee diffeomorphic mappings. Here we combine the advantages of a large-deformation fluid matching approach with empirical statistics on population variability in anatomy. We reformulated the Riemannian fluid algorithmdeveloped in [4], and used a Lagrangian framework to incorporate 0 th and 1st order statistics in the regularization process. 92 2D midline corpus callosum traces from a twin MRI database were fluidly registered using the non-statistical version of the algorithm (algorithm 0), giving initial vector fields and deformation tensors. Covariance matrices were computed for both distributions and incorporated either separately (algorithm 1 and algorithm 2) or together (algorithm 3) in the registration. We computed heritability maps and two vector and tensorbased distances to compare the power and the robustness of the algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Driving on an approach to a signalized intersection while distracted is relatively risky, as potential vehicular conflicts and resulting angle collisions tend to be relatively more severe compared to other locations. Given the prevalence and importance of this particular scenario, the objective of this study was to examine the decisions and actions of distracted drivers during the onset of yellow lights. Driving simulator data were obtained from a sample of 69 drivers under baseline and handheld cell phone conditions at the University of Iowa – National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examinations have been conducted from a traditional regression-based approach, which do not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that the probability of yellow light running increases with the increase in driving speed at the onset of yellow. Both young (18–25 years) and middle-aged (30–45 years) drivers reveal reduced propensity for yellow light running whilst distracted across the entire speed range, exhibiting possible risk compensation during this critical driving situation. The propensity for yellow light running for both distracted male and female older (50–60 years) drivers is significantly higher. Driver experience captured by age interacts with distraction, resulting in their combined effect having slower physiological response and being distracted particularly risky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aimed to identify novel genetic risk variants associated with migraine in the Norfolk Island population. Statistical analysis and bioinformatics approaches such as polygenic modeling and gene clustering methods were carried out to explore genotypic and expression data from high-throughput techniques. This project had a particular focus on hormonal genes and other genetic variants and identified a modest effect size on the migraine phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter addresses opportunities for problem posing in developing young children’s statistical literacy, with a focus on student-directed investigations. Although the notion of problem posing has broadened in recent years, there nevertheless remains limited research on how problem posing can be integrated within the regular mathematics curriculum, especially in the areas of statistics and probability. The chapter first reviews briefly aspects of problem posing that have featured in the literature over the years. Consideration is next given to the importance of developing children’s statistical literacy in which problem posing is an inherent feature. Some findings from a school playground investigation conducted in four, fourth-grade classes illustrate the different ways in which children posed investigative questions, how they made predictions about their outcomes and compared these with their findings, and the ways in which they chose to represent their findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As statistical education becomes more firmly embedded in the school curriculum and its value across the curriculum is recognised, attention moves from knowing procedures, such as calculating a mean or drawing a graph, to understanding the purpose of a statistical investigation in decision making in many disciplines. As students learn to complete the stages of an investigation, the question of meaningful assessment of the process arises. This paper considers models for carrying out a statistical inquiry and, based on a four-phase model, creates a developmental squence that can be used for the assessment of outcomes from each of the four phases as well as for the complete inquiry. The developmental sequence is based on the SOLO model, focussing on the "observed" outcomes during the inquiry process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed integer programming and parallel-machine job shop scheduling are used to solve the sugarcane rail transport scheduling problem. Constructive heuristics and metaheuristics were developed to produce a more efficient scheduling system and so reduce operating costs. The solutions were tested on small and large size problems. High-quality solutions and improved CPU time are the result of developing new hybrid techniques which consist of different ways of integrating simulated annealing and Tabu search techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus has a number of indispensable biochemical roles, but its natural deposition and the low solubility of phosphates as well as their rapid transformation to insoluble forms make the element commonly the growth-limiting nutrient, particularly in aquatic ecosystems. Famously, phosphorus that reaches water bodies is commonly the main cause of eutrophication. This undesirable process can severely affect many aquatic biotas in the world. More management practices are proposed but long-term monitoring of phosphorus level is necessary to ensure that the eutrophication won't occur. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing flow proportional load as well as representative average of concentrations of phosphorus in the environment. Although some types of passive samplers are commercially available, their uses are still scarcely reported in the literature. In Japan, there is limited application of passive sampling technique to monitor phosphorus even in the field of agricultural environment. This paper aims to introduce the relatively new P-sampling techniques and their potential to use in environmental monitoring studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As there are a myriad of micro organic pollutants that can affect the well-being of human and other organisms in the environment the need for an effective monitoring tool is eminent. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing time-integrated load as well as representative average of concentrations of pollutants in the environment. Those techniques have been applied to monitor many pollutants caused by agricultural activities, i.e. residues of pesticides, veterinary drugs and so on. Several types of passive samplers are commercially available and their uses are widely accepted. However, not many applications of those techniques have been found in Japan, especially in the field of agricultural environment. This paper aims to introduce the field of passive sampling and then to describe some applications of passive sampling techniques in environmental monitoring studies related to the agriculture industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines a social media assignment used to teach and practice statistical literacy with over 400 students each semester in large-lecture traditional, fully online, and flipped sections of an introductory-level statistics course. Following the social media assignment, students completed a survey on how they approached the assignment. Drawing from the authors’ experiences with the project and the survey results, this article offers recommendations for developing social media assignments in large courses that focus on the interplay between the social media tool and the implications of assignment prompts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the development of a rapid, sensitive and reproducible spectroscopic method for the detection of TNT in forensic and environmental applications. Simple nano sensors prepared by cost effective methods were utilized as sensitive platforms for the detection of TNT by surface enhanced Raman spectroscopy. The optimization of the substrate and the careful selection of a suitable recognition molecule contributed to the significant improvements of sensitive and selective targeting over current detection methods. The work presented in this thesis paves the way for effective detection and monitoring of explosives residues in law enforcement and environmental health applications.