966 resultados para single crystal epilayer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用低雷诺数k-ε模型,计算分析了Cz法大型砷化镓单晶生长中熔体 内的热量、动量输支特性。结果表明:适当的坩埚旋转能有效抑制晶体旋转产生的对流和浮力对流,增长晶体转速能使晶体/熔体界面附近等温线更加平直,适当的坩埚、晶体转速匹配能够抑止晶体/熔体界面附近的温度波动,热毛细力对强烈熔体流动的影响可以忽略不计,但对较弱的熔体流动影响较大。文中还给出了较为适宜的坩埚、晶体转速匹配方式。研究结果为生长高质量大型砷化镓单晶提供了有重要价值的数值依据。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

庆贺林同骅教授八十寿辰:汇集了国内塑性力学和细观力学两个领域内的一些学者和专家撰写的20余篇学术论文。

目录

・塑性力学部分・积分型理论中的内时和后继屈服面&匡震邦

单晶体弹塑性变形的Lagrange描述&黄筑平

一个三维弹粘塑性本构模型&徐 桢 梁乃刚

蠕变-塑性交互作用的微观机理及其一维本构模型&钱正芳 段祝平 范镜泓

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3 (001) substrate by metal organic deposition method. All YBCO films were fired at 820 degrees C in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed J(c) value of 3.3 MA/cm(2) at 77 K in self-field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过使用基于非正交网格有限体积法的FLUTRAPP(fluid flow and transport phenomena pro-gram)程序模拟了工业8 in单晶硅提拉法生长过程.数值模拟结果表明,流场及提拉速率在单晶硅生长过程中具有振荡特性,提拉速率的振荡周期大约为2 min.尖形磁场的引入能够抑制坩埚中熔体流动的振荡,减小提拉速率的振幅,从而有利于提高所生长单晶的质量.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to expand our understanding of the mechanism of stereocontrol in syndiospecific α-olefin polymerization, a family of Cs-symmetric, ansa-group 3 metallocenes was targeted as polymerization catalysts. The syntheses of new ansa-yttrocene and scandocene derivatives that employ the doubly [SiMe2]- bridged ligand array (1,2-SiMe2)2{C5H-3,5-(CHMe2)2} (where R = t- butyl, tBuThp; where R = i-propyl, iPrThp) are described. The structures of tBuThpY(µ-Cl)2K(THF)2, tBuThpSc(µ-Cl)2K(Et2O)2, tBuThpYCH(SiMe3)2, Y22-(tBuThp)2}(µ2-H)2, and tBuThpSc(µ-CH3)2 have been examined by single crystal X-ray diffraction methods. Ansa-yttrocenes and scandocenes that incorporate the singly [CPh2]-bridged ligand array (CPh2)(C5H4)(C13H8)(where C5H4 = Cp, cyclopentadienyl; where C13H8 = Flu, fluourenyl) have also been prepared. Select meallocene alkyl complexes are active single component catalysts for homopolymerization of propylene and 1-pentene. The scandocene tetramethylaluminate complexes generate polymers with the highes molecular weights of the series. Under all conditions examined atactic polymer microstructures are observed, suggesting a chain-end mechanism for stereocontrol.

A series of ansa-tantalocenes have been prepared as models for Ziegler-Natta polymerization catalysts. A singly bridged ansa-tantalocene trimethyl complex, Me2Si(η5-C5H4)2TaMe3, has been prepared and used for the synthesis of a tantalocene ethylene-methyl complex. Addition of propylene to this ethylene-methyl adduct results in olefin exchange to give a mixture of endo and exo propylene isomers. Doubly-silylene bridged ansa-tantalocene complexes have been prepared with the tBuThp ligand; a tantalocene trimethyl complex and a tantalocene methylidene-methyl complex have been synthesized and characterized by X-ray diffraction. Thermolysis of the methylidene-methyl complex affords the corresponding ethylene-hydride complex. Addition of either propylene or styrene to this ethylene-hydride compound results in olefin exchange. In both cases, only one product isomer is observed. Studies of olefin exchange with ansa-tantalocene olefin-hydride and olefin-methyl complexes have provided information about the important steric influences for olefin coordination in Ziegler-Natta polymerization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part one of this thesis consists of two sections. In the first section the fluorine chemical shift of a single crystal CaF_2 has been measured as a function of external pressure up to 4 kilobar at room temperature using multiple pulse NMR techniques. The pressure dependence of the shift is found to be -1.7 ± 1 ppm/kbar, while a theoretical calculation using an overlap model predicts a shift of -0.46 ppm/kbar. In the second section a separation of the chemical shift tensor into physically meaningful "geometrical" and "chemical" contributions is presented and a comparison of the proposed model calculations with recently reported data on hydroxyl proton chemical shift tensors demonstrates, that for this system, the geometrical portion accounts for the qualitative features of the measured tensors.

Part two of the thesis consists of a study of fluoride ion motion in β-PbF_2 doped with NaF by measurement of the ^(19)F transverse relaxation time (T_2), spin lattice relaxation time (T_1) and the spin lattice relaxation time in the rotating frame (T_(1r)). Measurements over the temperature range of -50°C to 160°C lead to activation energies for T_1, T_(1r) and T_2 of 0.205 ± 0.01, 0.29 + 0.02 and 0.27 ± 0.01 ev/ion, and a T_(1r) minimum at 56°C yields a correlation time of 0.74 μsec. Pressure dependence of T_1 and T_2 yields activation volumes of <0.2 cm^3/g-mole and 1.76 ± 0.05 cm^3/g-mole respectively. These data along with the measured magnetic field independence of T_1 suggest that the measured T_1's are not caused by ^(19)F motion, but by thermally excited carriers.

Part three of the thesis consists of a study of two samples of Th_4H_(15), prepared under different conditions but both having the proper ratio of H/Th (to within 1%). The structure of the Th_4H_(15) as suggested by X-ray measurements is confirmed through a moment analysis of the rigid lattice line shape. T_1 and T_2 measurements above 390 K furnish activation energies of 16.3 ± 1.2 kcal/mole and 18.0 ± 3.0 kcal/mole, respectively. Below 350 K, T_(1r) measurements furnish an activation energy of 10.9 ± 0.7 kcal/mole, indicating most probably more than a single mechanism for proton motion. A time-temperature hysteresis effect of the proton motion was found in one of the two samples and is strongly indicative of a phase change. T_1 at room temperature and below is dominated by relaxation due to conduction electrons with the product T_1T being 180 ± 10 K-sec. Using multiple pulse techniques to greatly reduce homonuclear dipolar broadening, a temperature-dependent line shift was observed, and the chemical shift anisotropy is estimated to be less than 16 ppm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:

1. Embedded Epitaxy

This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.

2. Barrier Controlled PNPN Laser Diode

It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.

3. Injection Lasers on Semi-Insulating Substrates

GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main factors affecting solid-phase Si-metal interactions are reported in this work. The influence of the orientation of the Si substrates and the presence of impurities in metal films and at the Si-metal interface on the formation of nickel and chromium silicides have been demonstrated. We have observed that the formation and kinetic rate of growth of nickel silicides is strongly dependent on the orientation and crystallinity of the Si substrates; a fact which, up to date, has never been seriously investigated in silicide formation. Impurity contaminations in the Cr film and at the Si-Cr interface are the most dominant influencing factors in the formation and kinetic rate of growth of CrSi2. The potentiality and use of silicides as a diffusion barrier in metallization on silicon devices were also investigated.

Two phases, Ni2Si and NiSi, form simultaneously in two distinct sublayers in the reaction of Ni with amorphous Si, while only the former phase was observed on other substrates. On (111) oriented Si substrates the growth rate is about 2 to 3 times less than that on <100> or polycrystalline Si. Transmission electron micrographs establish-·that silicide layers grown on different substrates have different microcrystalline structures. The concept of grain-boundary diffusion is speculated to be an important factor in silicide formation.

The composition and kinetic rate of CrSi2 formation are not influenced by the underlying Si substrate. While the orientation of the Si substrate does not affect the formation of CrSi2 , the purity of the Cr film and the state of Si-Cr interface become the predominant factors in the reaction process. With an interposed layer of Pd2Si between the Cr film and the Si substrate, CrSi2 starts to form at a much lower temperature (400°C) relative to the Si-Cr system. However, the growth rate of CrSi2 is observed to be independent of the thickness of the Pd2Si layer. For both Si-Cr and Si-Pd2Si-Cr samples, the growth rate is linear with time with an activation energy of 1.7 ± 0.1 ev.

A tracer technique using radioactive 31Si (T1/2 = 2.26 h) was used to study the formation of CrSi2 on Pd2Si. It is established from this experiment that the growth of CrSi2 takes place partly by transport of Si directly from the Si substrate and partly by breaking Pd2Si bonds, making free Si atoms available for the growth process.

The role of CrSi2 in Pd-Al metallization on Si was studied. It is established that a thin CrSi2 layer can be used as a diffusion barrier to prevent Al from interacting with Pd2Si in the Pd-Al metallization on Si.

As a generalization of what has been observed for polycrystalline-Si-Al interaction, the reactions between polycrystalline Si (poly Si) and other metals were studied. The metals investigated include Ni, Cr, Pd, Ag and Au. For Ni, Cr and Pd, annealing results in silicide formation, at temperatures similar to those observed on single crystal Si substrates. For Al, Ag and Au, which form simple eutectics with Si annealing results in erosion of the poly Si layer and growth of Si crystallites in the metal films.

Backscattering spectrometry with 2.0 and 2.3 MeV 4He ions was the main analytical tool used in all our investigations. Other experimental techniques include the Read camera glancing angle x-ray diffraction, scanning electron, optical and transmission electron microscopy. Details of these analytical techniques are given in Chapter II.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The E‒H bond activation chemistry of tris-phosophino-iron and -cobalt metallaboratranes is discussed. The ferraboratrane complex (TPB)Fe(N2) heterolytically activates H‒H and the C‒H bonds of formaldehyde and arylacetylenes across an Fe‒B bond. In particular, H‒H bond cleavage at (TPB)Fe(N2) is reversible and affords the iron-hydride-borohydride complex (TPB)(μ‒H)Fe(L)(H) (L = H2, N2). (TPB)(μ‒H)Fe(L)(H) and (TPB)Fe(N2) are competent olefin and arylacetylene hydrogenation catalysts. Stoichiometric studies indicate that the B‒H unit is capable of acting as a hydride shuttle in the hydrogenation of olefin and arylacetylene substrates. The heterolytic cleavage of H2 by the (TPB)Fe system is distinct from the previously reported (TPB)Co(H2) complex, where H2 coordinates as a non-classical H2 adduct based on X-ray, spectroscopic, and reactivity data. The non-classical H2 ligand in (TPB)Co(H2) is confirmed in this work by single crystal neutron diffraction, which unequivocally shows an intact H‒H bond of 0.83 Å in the solid state. The neutron structure also shows that the H2 ligand is localized at two orientations on cobalt trans to the boron. This localization in the solid state contrasts with the results from ENDOR spectroscopy that show that the H2 ligand freely rotates about the Co‒H2 axis in frozen solution. Finally, the (TPB)Fe system, as well as related tris-phosphino-iron complexes that contain a different apical ligand unit (Si, PhB, C, and N) in place of the boron in (TPB)Fe, were studied for CO2 hydrogenation chemistry. The (TPB)Fe system is not catalytically competent, while the silicon, borate, carbon variants, (SiPR3)Fe, (PhBPiPr3)Fe, and (CPiPr3)Fe, respectively, are catalysts for the hydrogenation of CO2 to formate and methylformate. The hydricity of the CO2 reactive species in the silatrane system (SiPiPr3)Fe(N2)(H) has been experimentally estimated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theoretical and experimental results are presented for simultaneous multibeam coupling in photorefractive SBN:Ce. Within a single crystal, multiple signals are amplified through a coupling process that employs a single pump. The coupling gain of each signal results from coupling both between the pump and the signal and between different signals. The amount of gain that each signal receives is dependent on the intensity of the incident signal; thus a competition for the gain exists among the various signals.