994 resultados para silicon etching
Resumo:
Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A surface-region-purification-induced p-n junction, a puzzle discovered at Brookhaven National Laboratory, in a silicon-on-defect-layer (SODL) material has been explored by carrying out various annealing conditions and subsequent measurements on electrical properties. The origin of the pn junction has been experimentally investigated. Furthermore, the p-n junction has been transformed into a p-i-n electrical structure by adding a high temperature annealing process to the previously used SODL procedure, making the SODL material approach silicon on insulator (SOI). The control of the initial oxygen amount in the silicon material is suggested to be critical for the experimental results.
Resumo:
Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The samples of silicon nanocrystals (nc-Si) were prepared by Si ion implanted into SiO2 layers. Photoluminescence spectra were measured at room temperature and their dependence on thermal annealing was investigated. The experimental results show that PL peaks originate from the defects in SiO2 layers caused by ion implantation when the thermal annealing temperature is lower than 800 C. The PL peak from nc-Si was observed when the thermal annealing temperature was higher than 900 C, and PL intensity reached its maximum at the thermal annealing temperature of 1100 C. As the annealing temperature increases the red shift of PL peak from nc-Si shows the quantum size effect. The characterized Raman scattering peak of nc-Si was observed at the right angle scattering configuration for the first time. It provides further support for the PL measurements.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix is formed by annealing the SiO2 films fabricated by plasma enhanced chemical vapor deposition technique. In conjunction with the micro-Ramam spectra, the absorption spectra of the films have been investigated. The blue-shift of absorption edge with decreasing size of silicon crystallites is due to quantum confinement effect. It is found that nanocrystalline silicon is of an indirect band structure, and that the absorption presents an exponential dependance absorption coefficient on photon energy ii! the range of 2.0-3.0 eV, and a sub-band appears in the the range of 1.0-1.5 eV. We believe that the exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the Sub-band absorption is ascribed to transitions between the amorphous silicon states existing in the films.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix has been formed by annealing the a-SiOx films fabricated by plasma enhanced chemical vapor deposition technique. Absorption and photoluminescence spectra of, the films have been studied in conjunction with micro-Raman scattering spectra. It is found that absorption presents an exponential dependence of absorption coefficient to photon energy in the range of 1.5-3.0 eV, and a sub-band appears in the range of 1.0-1.5 eV. The exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the sub-band absorption is ascribed to transitions between surfaces and/or defect states of the silicon nanocrystallites. The existence of Stokes shift between absorption and photoluminescence suggests that the phonon-assisted luminescence would he enhanced due to the quantum confinement effects.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
High-frequency vibrational modes have been observed at liquid-helium temperature in silicon samples grown in a H-2 or D-2 atmosphere. The highest-frequency ones are due to the overtones and combination modes of SiH fundamentals. Others are CH modes due to (C,H) complexes, but the simultaneous presence of NH modes due to (N,H) complexes cannot be excluded. The present results seem to show also the existence of centers including both SiH and CH or NH bonds. One sharp mode at 4349 cm-l is related to a weak SiH fundamental at 2210 cm(-1). The related center is ascribed to a vacancy fully decorated with hydrogen with a nearest-neighbor C atom. [S0163-1829(99)00911-X].
New annealing processes and explanation for novel silicon pn junctions formed by proton implantation
Resumo:
Proton-implanted n-type Si wafers were annealed at 950 degrees C to achieve novel pn junctions. The novel pn junctions are explained by the combined use of four models. The background (e.g. oxygen impurity) of an Si wafer is suggested to play a key role in creating the novel pn junction.
Resumo:
A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.
Resumo:
It was determined that oxygen concentration in heavily Sb-doped silicon was about 40% lower than that in the lightly doped Czochralski grown silicon and decreased with increasing content of Sb by means of coincident elastic recoil detection analysis. Through thermodynamic calculation, the oxygen loss by evaporation from the free surface of melt is only due to the formation of SiO, and Sb2O3 evaporation can be neglected. The basic reason for oxygen concentration reduction in heavily Sb-doped CZSi was that oxygen solubility decreased when element Sb with larger radius doped degenerately into silicon crystal. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A pronounced photoluminescence enhancement on chemically oxidized porous silicon was induced by a series of organic cyano compounds including 1,2-dicyanoethylene (CE), 1,3-dicyanobenzene (1,3-CB), 1,4-dicyanobenzene (1,4-CB), 1-cyanonaphthalene (1-CN), and 9-cyanoanthracene (9-CA). Photoluminescence enhancement effects were reversible for all compounds studies in this work. A dependence of photoluminescence enhancement on the steric effect and the electronic characteristics of these compounds and the structure of the porous silicon substrates were analyzed in terms of the photoluminescence enhancing factors. Surface chemical composition examined by Fourier transform infrared (FTIR) spectra demonstrated that the surface Si-H bonds were not changed and no new luminescent compounds were formed on porous silicon surface during adsorption of cyano compounds. A mechanism based on induced surface states acting as radiative recombination centers by cyano compounds adsorption was suggested.
Resumo:
Void-like defects of octahedron structure having {111} facets were observed in annealed Czochralski silicon. The amorphous coverage of SiOx and SiCx on the inner surface of the defects was identified using transmission electron microscopy and electron energy-loss spectroscopy. It is suggested that these defects are a kind of amorphous precipitate origin. A mechanism for the generation of these defects and the previously reported solid amorphous precipitates is proposed. (C) 1998 American Institute of Physics. [S0003-6951(98)02842-3].
Resumo:
An improved pulsed rapid thermal annealing method has been used to crystallize amorphous silicon films prepared by PECVD. The solid-phase crystallization and dopant activation process can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/l-s 850 degrees C thermal pulse. A mean grain size more than 1000 Angstrom and a Hall mobility of 24.9 cm(2)/V s are obtained in the crystallized films. The results indicate that this annealing method possesses the potential for fabricating large-area and good-quality polycrystalline silicon films on low-cost glass substrate. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The microstructure, hydrogen bonding configurations and hydrogen content of high quality and stable hydrogenated amorphous silicon (a-Si:H) films prepared by a simple ''uninterrupted growth/annealing" plasma enhanced chemical vapor deposition technique have been investigated by Raman scattering and infrared absorption spectroscopy. The high stability a-Si:H films contain small amounts of a microcrystalline phase and not less hydrogen (10-16 at. %), particularly, the clustered phase hydrogen, Besides, the hydrogen distribution is very inhomogeneous. Some of these results are substantially distinct from those of conventional device-quality n-Si:H film or stable cr-Si:H films prepared by the other techniques examined to date. The stability of n-Si:H films appears to have no direct correlation with the hydrogen content or the clustered phase hydrogen concentration. The ideal n-Si:H network with high stability and low defect density is perhaps not homogeneous. (C) 1998 American Institute of Physics.