929 resultados para selective estrogen receptor modulators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This study was designed to evaluate the impact of eplerenone on collagen turnover in preserved systolic function heart failure (HFPSF).

BACKGROUND: Despite growing interest in abnormal collagen metabolism as a feature of HFPSF with diastolic dysfunction, the natural history of markers of collagen turnover and the impact of selective aldosterone antagonism on this natural history remains unknown.

METHODS: We evaluated 44 patients with HFPSF, randomly assigned to control (n = 20) or eplerenone 25 mg daily (n = 24) for 6 months, increased to 50 mg daily from 6 to 12 months. Serum markers of collagen turnover and inflammation were analyzed at baseline and at 6 and 12 months and included pro-collagen type-I and -III aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha. Doppler-echocardiographic assessment of diastolic filling indexes and tissue Doppler analyses were also obtained.

RESULTS: The mean age of the patients was 80 +/- 7.8 years; 46% were male; 64% were receiving an angiotensin-converting enzyme inhibitor, 34% an angiotensin-II receptor blocker, and 68% were receiving beta-blocker therapy. Pro-collagen type-III and -I aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha increased with time in the control group. Eplerenone treatment had no significant impact on any biomarker at 6 months but attenuated the increase in pro-collagen type-III aminoterminal peptide at 12 months (p = 0.006). Eplerenone therapy was associated with modest effects on diastolic function without any impact on clinical variables or brain natriuretic peptide.

CONCLUSIONS: This study demonstrates progressive increases in markers of collagen turnover and inflammation in HFPSF with diastolic dysfunction. Despite high background utilization of renin-angiotensin-aldosterone modulators, eplerenone therapy prevents a progressive increase in pro-collagen type-III aminoterminal peptide and may have a role in management of this disease. (The Effect of Eplerenone and Atorvastatin on Markers of Collagen Turnover in Diastolic Heart Failure; NCT00505336).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL)
cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a
lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI
knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased
atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains
unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328
individuals with extremely high plasma HDL-C levels, we identified a homozygote for a lossof-function
variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene
encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and
abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells
derived from induced pluripotent stem cells from the homozygous subject, and in mice.
Large population-based studies revealed that subjects who are heterozygous carriers of
the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have
a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is
statistically significant).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are seven-pass integral membrane proteins that act as transducers of extracellular signals across the lipid bilayer. Their location and involvement in basic and pathological physiological processes has secured their role as key targets for pharmaceutical intervention. GPCRs are targeted by many of the best-selling drugs on the market and there are a substantial number of GPCRs that are yet to be characterised; these could offer interest for therapeutic targeting. GPR35 is one such receptor that, as a result of gene knockout and genome wide association studies, has attracted interest through its association with cardiovascular and gastrointestinal disease. Elucidation of the basic physiological function of GPR35 has, however, been difficult due a paucity of potent and selective ligands in addition to a lack of consensus on the endogenous ligand. Herein, a focussed drug discovery effort was carried out to identify agonists of GPR35. Various in vitro cellular assays were employed in conjunction with N- or C-terminally manipulated forms of the receptor to investigate GPR35’s signalling profile and to provide an assay format suitable for the characterisation of newly identified ligands. Although GPR35 associates with both Gαi/o and Gα13 families of small heterotrimeric G proteins, the G protein-independent β-arrestin-2 recruitment format was found to be the most suited to drug screening efforts. Small molecule compound screening, carried out in conjunction with the Medical Research Council Technology, identified compound 1 as the most potent ligand of human GPR35 reported at that time. However, the lower efficacy and potency of compound 1 at the rodent species orthologues of GPR35 prevented its use in in vivo studies. A subsequent effort, carried out with Novartis, focused on mast cell stabilisers as putative agonists of GPR35, revealed lodoxamide and bufrolin as highly potent agonists that activated human and rat GPR35 with equal potency. This finding offered–for the first time–the opportunity to employ the same GPR35 ligand between species at a similar concentration, an important factor to consider when translating rodent in vivo functional studies to those in man. Additionally, using molecular modelling and site directed mutagenesis studies, these newly identified compounds were used to aid characterisation of the ligand binding pockets of human and rat GPR35 to reveal the molecular basis of species selectivity at this receptor. In summary, this research effort presents GPR35 tool compounds that can now be used to dissect the basic biology of GPR35 and investigate its contribution to disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of linear peptide based anion receptors, in which the distance between the bis[zinc(II)dipicolylamine] binding sites and the peptide backbone was varied systematically, was prepared and their anion binding ability was investigated using indicator displacement assays. Shortening the distance between the binding site and the peptide backbone was found to enhance both the receptor affinity and selectivity for pyrophosphate over other organic polyphosphate anions in Krebs buffer with the maximum selectivity and affinity observed with a spacer length of two methylene units. The suitability of these receptors for the determination of pyrophosphate concentrations in Krebs buffer and in artificial urine was examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selectivity is demonstrated in a supramolecular host:guest system using a receptor with a non-linear binding site. For the "open" receptor 1 strong binding for both flexible and rigid guests was observed. Receptor 2, with a "blocked" binding site, also bound flexible guests effectively but its affinity for rigid guests was 50 fold lower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.