974 resultados para robotic manipulator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the development of a haptic recording and modelling system. Currently being evaluated for multiple uses in surgery and manufacturing, this recording system evaluates haptic data captured via a robotic ann coupled with real time high-resolution load cell. This data is then analysed and validated against previous samples and a generated model before being logged for playback during simulation and training of a human operator. 3D models of point force interactions are created allowing unique visuals to be presented to a user. Primarily designed for the medical field, recorded results of soft tissue cutting have been presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperated robotic systems provide a valuable solution for the exploration of hazardous environments. The ability to explore dangerous environments from the safety of a remote location represents an important progression towards the preservation of human safety in the inevitable response to such a threat. While the benefits of removing physical human presence are clear, challenges associated with remote operation of a robotic system need to be addressed. Removing direct human presence from the robot's operating environment introduces telepresence as an important consideration in achieving the desired objective. The introduction of the haptic modality represents one approach towards improving operator performance subject to reduced telepresence. When operating in an urban environment, teleoperative stair climbing is not an uncommon scenario. This work investigates the operation of an articulated track mobile robot designed for ascending stairs under teleoperative control. In order to assist the teleoperator in improved navigational capabilities, a fuzzy expert system is utilised to provide the teleoperator with intelligent haptic augmentation with the aim of improving task performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperation has been used in many applications, allowing a human operator to remotely control a robotic system in order to perform a particular task. Recently haptic teleoperation has focused mainly on improving performance in remote manipulation tasks, however the haptic approach offers similar advantages for teleoperative control of the motion of a mobile robot. This paper describes a prototype system designed to facilitate haptic teleoperation of an all-terrain, articulated track mobile robot. This system utilizes a multi-modal user interface intended to improve operator immersion, reduce operator overload and improve teleoperative task performance. The system architecture facilitates implementation of an application-specific haptic augmentation algorithm in order to improve operator performance in challenging real-world tasks. The contributions of this work can be categorized as the custom mobile platform, teleoperator interface and haptic augmentation strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an efficient technique to design dynamic feedback control scheme for single-link flexible manipulators.  A linear model can be derived for the robotic system using the assumed-mode method.  Conventional techniques such as pole-placement or LQR require physical measurements of all systme states,  posing a stringent requirement for its implementation.  To overcome this problem, a low-order state functional observer is proposed here for reconstruction of the state feedback control action.  The observer design involves solving an optimisation problem with the objective to generate a feedback gain that is as close as possible to that of the required feedback controller.  A condition for robust stability of the closed-loop system under the observer-based control scheme is given.  The attractive features of the propsed technique are the resulted functional state observer is of a very low order and it requires only sensor measurements of only the output- the tip position of the arm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperated mobile robots provide the ability for a human operator to safely explore and evaluate hazardous environments. This ability represents an important progression towards the preservation of human safety in the inevitable response to situations such as terrorist activities and urban search and rescue. The benefits of removing physical human presence from such environments are obvious, however challenges inhibiting task performance when remotely operating a mobile robotic system need to be addressed. The removal of physical human presence from the target environment introduces telepresence as a vital consideration in achieving the desired objective. Introducing haptic human-robotic interaction represents one approach towards improving operator performance in such a scenario. Teleoperative stair traversal proves to be a challenging task when undertaking threat response in an urban environment. This article investigates the teleoperation of an articulated track mobile robot designed for traversing stairs in a threat response scenario. Utilising a haptic medium for bilateral human-robotic interaction, the haptic cone methodology is introduced with the aim of providing the operator with a vision-independent, intuitive indication of the current commanded robot velocity. The haptic cone methodology operates synergistically with the introduced fuzzy-haptic augmentation for improving teleoperator performance in the stair traversal scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple and available system for manipulation of heavy tools by low powered manipulator for industrial applications. In the heavy manufacturing industries, sometimes, heavy tools are employed for different types of work. But the application of robots with heavy tools is not possible due to the limited torque limits of actuators. Suspended tool systems (STS) have been proposed to manipulate heavy tools by low powered robot-arm for this purpose. A low powered five-bar direct-drive parallel manipulator is designed and constructed to manipulate heavy tools suspended from a spring balancer. The validity, usefulness, and effectiveness of the suspended tool system are shown by experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One stage in designing the control for underwater robot swarms is to confirm the control algorithms via simulation. To perform the simulation Microsoftpsilas Robotic Studiocopy was chosen. The problem with this simulator and others like it is that it is set up for land-based robots only. This paper explores one possible way to get around this limitation. This solution cannot only work for underwater vehicles but aerial vehicles as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to develop a robotic system of systems the robotic platforms must be designed and built. For this to happen, the type of application involved should be clear. Swarm robots need to be self contained and powered. They must also be self governing. Here the authors examine various applications and a prototype robot that may be useful in these scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of electronic noses and gas sensing has been developing rapidly since the introduction of the silicon based sensors. There are numerous systems that can detect and indicate the level of a specific gas. We introduce here a system that is low power, small and cheap enough to be used in mobile robotic platforms while still being accurate and reliable enough for confident use. The design is based around a small circuit board mounted in a plastic case with holes to allow the sensors to protrude through the top and allow the natural flow of gas evenly across them. The main control board consists of a microcontroller PCB with surface mount components for low cost and power consumption. The firmware of the device is based on an algorithm that uses an Artificial Neural Network (ANN) which receives input from an array of gas sensors. The various sensors feeding the ANN allow the microcontroller to determine the gas type and quantity. The Testing of the device involves the training of the ANN with a number of different target gases to determine the weightings for the ANN. Accuracy and reliability of the ANN is validated through testing in a specific gas filled environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A traffic control device in the form of a humanoid character robot, doll or dummy is used to warn driver of danger ahead on the road. The device can be used on roads, streets and in other sites where there are moving vehicles. The robotic device informs drivers of impending danger by moving its arms and sounding an acoustic alarm. In this way the robot can simulate a policeman or road flagging operator. The device may also include speed detection and preferably speed indication means. The robot may make decisions based on the detected speed of a vehicle and the limit for the area in operating the arms and sound warning means. The robot may also be equipped with a camera or video. The robot may also be controlled wirelessly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptic teleoperation allows human operators to interact with a remote mobile robot using their haptic sensory modality. This research introduces new haptic control methodologies allowing the teleoperator to overcome the limitations of existing techniques, ultimately facilitating improved mobile robotic control for the exploration of hazardous and remote environments.