922 resultados para requirement for consent discontinuance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statutory licensing schemes are proliferating as a means of regulating commercial activity, resource exploitation and activities harmful to the environment. Statutes often declare that entitlements are non-transferable or are transferable only with approval or subject to conditions. Some entitlements, such as resource consents issued under the Resource Management Act 1991 (NZ), are declared not to be property. Despite these statutory declarations, entitlements are often held to be transferable in equity or to be property for the purposes of resolving private disputes. Recently, in Greenshell New Zealand Ltd v Tikapa Moana Enterprises Ltd, the High Court of New Zealand indicated that a resource consent was property that could support a claim for relief against forfeiture, continuing the trend in earlier cases that appear to depart from the statute. In this article we examine the juridical treatment of entitlements in private law. We identify factors influencing the courts’ enforcement of private arrangements which may circumvent the statutory intent. Our analysis will guide legislators in the design of provisions to implement new schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An NADP+-specific isocitrate dehydrogenase has been purified and characterized from Rhizobium meliloti. The enzyme showed Mn++ or Mg++ requirement. The apparent Km values were 2.00×10-5 m and 1.51×10-5 m for dl-isocitrate and NADP+, respectively. The enzyme was inhibited by ATP, to a lesser extent by ADP and AMP. agr-Ketoglutarate also inhibited the enzyme activity. Oxalacetate and glyoxylate together inhibited the enzyme activity. The inhibition was competitive. Studies with thiol inhibitors suggested that the enzyme contained a sulfhydryl group at or near the active site. The enzyme has an approximate molecular weight of 60 000. Fluorescence studies suggested that the enzyme contained tryptophan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In northern latitudes, temperature is the key factor driving the temporal scales of biological activity, namely the length of the growing season and the seasonal efficiency of photosynthesis. The formation of atmospheric concentrations of biogenic volatile organic compounds (BVOCs) are linked to the intensity of biological activity. However, interdisciplinary knowledge of the role of temperature in the biological processes related to the annual cycle and photosynthesis and atmospheric chemistry is not fully understood. The aim of this study was to improve understanding of the role of temperature in these three interlinked areas: 1) onset of growing season, 2) photosynthetic efficiency and 3) BVOC air concentrations in a boreal forest. The results present a cross-section of the role of temperature on different spatial (southern northern boreal), structural (tree forest stand - forest) and temporal (day-season- year) scales. The fundamental status of the Thermal Time model in predicting the onset of spring recovery was confirmed. However, it was recommended that sequential models would be more appropriate tools when the onset of the growing season is estimated under a warmer climate. A similar type of relationship between photosynthetic efficiency and temperature history was found in both southern and northern boreal forest stands. This result draws attention to the critical question of the seasonal efficiency of coniferous species to emit organic compounds under a warmer climate. New knowledge about the temperature dependence of the concentrations of biogenic volatile organic compounds in a boreal forest stand was obtained. The seasonal progress and the inter-correlation of BVOC concentrations in ambient air indicated a link to biological activity. Temperature was found to be the main driving factor for the concentrations. However, in addition to temperature, other factors may play a significant role here, especially when the peak concentrations are studied. There is strong evidence that the spring recovery and phenological events of many plant species have already advanced in Europe. This study does not fully support this observation. In a boreal forest, changes in the annual cycle, especially the temperature requirement in winter, would have an impact on the atmospheric BVOC composition. According to this study, more joint phenological and BVOC field observations and laboratory experiments are still needed to improve these scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transposable elements, transposons, are discrete DNA segments that are able to move or copy themselves from one locus to another within or between their host genome(s) without a requirement for DNA homology. They are abundant residents in virtually all the genomes studied, for instance, the genomic portion of TEs is approximately 3% in Saccharomyces cerevisiae, 45% in humans, and apparently more than 70% in some plant genomes such as maize and barley. Transposons plays essential role in genome evolution, in lateral transfer of antibiotic resistance genes among bacteria and in life cycle of certain viruses such as HIV-1 and bacteriophage Mu. Despite the diversity of transposable elements they all use a fundamentally similar mechanism called transpositional DNA recombination (transposition) for the movement within and between the genomes of their host organisms. The DNA breakage and joining reactions that underlie their transposition are chemically similar in virtually all known transposition systems. The similarity of the reactions is also reflected in the structure and function of the catalyzing enzymes, transposases and integrases. The transposition reactions take place within the context of a transposition machinery, which can be particularly complex, as in the case of the VLP (virus like particle) machinery of retroelements, which in vivo contains RNA or cDNA and a number of element encoded structural and catalytic proteins. Yet, the minimal core machinery required for transposition comprises a multimer of transposase or integrase proteins and their binding sites at the element DNA ends only. Although the chemistry of DNA transposition is fairly well characterized, the components and function of the transposition machinery have been investigated in detail for only a small group of elements. This work focuses on the identification, characterization, and functional studies of the molecular components of the transposition machineries of BARE-1, Hin-Mu and Mu. For BARE-1 and Hin-Mu transpositional activity has not been shown previously, whereas bacteriophage Mu is a general model of transposition. For BARE-1, which is a retroelement of barley (Hordeum vulgare), the protein and DNA components of the functional VLP machinery were identified from cell extracts. In the case of Hin-Mu, which is a Mu-like prophage in Haemophilus influenzae Rd genome, the components of the core machinery (transposase and its binding sites) were characterized and their functionality was studied by using an in vitro methodology developed for Mu. The function of Mu core machinery was studied for its ability to use various DNA substrates: Hin-Mu end specific DNA substrates and Mu end specific hairpin substrates. The hairpin processing reaction by MuA was characterized in detail. New information was gained of all three machineries. The components or their activity required for functional BARE-1 VLP machinery and retrotransposon life cycle were present in vivo and VLP-like structures could be detected. The Hin-Mu core machinery components were identified and shown to be functional. The components of the Mu and Hin-Mu core machineries were partially interchangeable, reflecting both evolutionary conservation and flexibility within the core machineries. The Mu core machinery displayed surprising flexibility in substrate usage, as it was able to utilize Hin-Mu end specific DNA substrates and to process Mu end DNA hairpin substrates. This flexibility may be evolutionarily and mechanistically important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diglycyl triperoxodivanadate [V2O2(O2)3(Gly H)2(H2O)2], a synthetic compound with μ-peroxo-bridge derived from H2O2and vanadate, oxidized bromide to a bromination-competent intermediate in phosphate buffer and physiological pH. This is in contrast to the requirement of acid medium with H2O2as the oxidant. Addition of its solid to bromide solution instantly produced a 262-nm-absorbing compound that converted phenol red (a trap) to its 592-nm-absorbing bromo-derivative. The high bromination activity was lost on dissolving this compound in water and the solution showed the presence of peroxovanadates (mono and di) and vanadates (V1and oligomeric V10) in51V-NMR spectrum. Of these, diperoxovanadate and vanadate together supported slow bromination activity by a second set of reactions including bromide-assisted reductive formation of vanadyl. Bromination activity dependent on vanadyl was sensitive to oxidation by excess H2O2and to complexation by EDTA, whereas that of triperoxodivanadate was relatively insensitive. Vanadyl and diperoxovanadate are capable of forming a μ-peroxo-bridged complex that is essentially similar to the synthetic vanadate dimer used in the present experiments. It appears that a μ-peroxo-intermediate is the proximal oxidant of bromide in vanadium-catalyzed bromoperoxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and phosphorylation of protein factor(s) that bind to the positivecis-acting element (−69 to −98 nt) of the CYP2B1/B2 gene have been examinedin vivoin the rat. Treatment of rats with cycloheximide, a protein synthetic inhibitor, suppresses basal as well as phenobarbitone-induced levels of CYP2B1/B2 mRNA and its run-on transcription. Under these conditions, complex formation of the nuclear extract with the positive element is also inhibited, as judged by gel shift assays. Treatment of rats with 2-aminopurine, a general protein kinase inhibitor, blocks the phenobarbitone-mediated increase in CYP2B1/B2 mRNA, cell-free transcription of a minigene construct containing the positive element, pP450e179DNA, and binding of nuclear proteins to the positive element. Treatment of rats with okadaic acid, a protein phosphatase inhibitor, mimics the effects of phenobarbitone, but only partially. Thus, both phenobarbitone and okadaic acid individually enhance binding of the nuclear protein(s) to the positive element, cell-free transcription of the minigene construct, and phosphorylation of the not, vert, similar26- and 94-kDa proteins binding to the positive element. But unlike phenobarbitone, okadaic acid is not an inducer of CYP2B1/B2 mRNA or its run-on transcription. Thus, phenobarbitone-responsive positive element interactions constitute only a minimal requirement, and okadaic acid is perhaps not able to bring about the total requirement for activation of CYP2B1/B2 gene transcription that should include interaction between the minimal promoter and further upstream elements. An intriguing feature is the antagonistic effect of okadaic acid on phenobarbitone-mediated effects on CYP2B1/B2 mRNA levels, cell-free and run-on transcription, and nuclear protein binding to the positive element. The reason for this antagonism is not clear. It is concluded that phenobarbitone treatment enhancesin vivothe synthesis and phosphorylation of protein factors binding to the positive element and these constitute a minimal requirement for the transcriptional activation of the CYP2B1/B2 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple protoplast isolation protocol that was designed to recover totipotent plant protoplasts with relative ease has been described. The key elements of the protocol are, tissue digestion at slightly elevated temperatures and use of protoplast-releasing enzymes that are stable and efficient at higher temperatures. Besides enzymes, the protoplast isolation cocktail consisted of an osmoticum (mannitol or MgSO4), and a protectant (CaCl2 2H2O), all dissolved in distilled water. The protocol has ensured reproducibility, higher yields and is gentle on protoplasts as the protoplasts obtained were amenable to cell wall regeneration and cell division. Plant regeneration was demonstrated forNicotiana tabacum cv. Thompson from protoplasts isolated by this method. Wall regeneration and cell division were obtained in other species. The merits of the protocol are, simple and easy-to-handle procedure, non-requirement of preconditioning of donor plant and explants, incubation without agitation, satisfactory yields, culturability of the protoplasts isolated and applicability of the protocol to a large number of species including mucilage-containing plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although requirement for follicle stimulating hormone (FSH) in the initiation of spermatogenesis is well documented, its role in adult spermatogenesis is still debated. In the present communication, we have investigated the effect of specific immunoneutralization of FSH on apoptotic cell death in the testicular germ cells both in immature and adult rats. The germ cells of control animals showed predominantly high molecular weight DNA while the antiserum (a/s) treated group showed DNA fragmentation characteristic of apoptosis. The pattern could be detected within 24 hours of a/s treatment, and became more pronounced after 48 hours. The germ cells were purified from FSH a/s treated rats by centrifugal elutriation and vulnerability of each cell type to undergo apoptosis on FSH neutralization was investigated. The pachytene spermatocytes were found to be most sensitive to absence of FSH, even in the adult animals suggesting the involvement of FSH in spermatogenesis. The in situ analysis of DNA strand breakage following FSH a/s treatment showed fragmentation of the DNA of the pachytene spermatocytes confirming this observation. The in situ analysis also showed that the spermatogonia undergo apoptosis in addition to the pachytene spermatocytes. These data clearly demonstrate the role of FSH in the adult rat spermatogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E-health can facilitate communication and interactions among stakeholders involved in pandemic responses. Its implementation, nevertheless, represents a disruptive change in the healthcare workplace. Organisational preparedness assessment is an essential requirement prior to e-health implementation; including this step in the planning process can increase the chances of programme success. The objective of this study is to develop an e-health preparedness assessment model for pandemic influenza (EHPM4P). Following the Analytic Hierarchy Process (AHP), 20 contextual interviews were conducted with domain experts from May to September 2010. We examined the importance of all preparedness components within a fivedimensional hierarchical framework that was recently published. We also calculated the relative weight for each component at all levels of the hierarchy. This paper presents the hierarchical model (EHPM4P) that can be used to precisely assess healthcare organisational and providers' preparedness for e-health implementation and potentially maximise e-health benefits in the context of an influenza pandemic. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type III secretion system (T3SS) is an essential requirement for the virulence of many Gram-negative bacteria which infect plants, animals and men. Pathogens use the T3SS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cells, where the effectors subvert host defenses. The best candidates for directing effector protein traffic are the bacterial type III-associated appendages, called needles or pili. In plant pathogenic bacteria, the best characterized example of a T3SS-associated appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into extracellular space, and avirulence (Avr) proteins such as AvrPto which are translocated directly to the plant cytoplasm. This study deals with the structural and functional characterization of the T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a carrier of antigenic determinants for vaccination. By pulse-expression of proteins combined with immuno-electron microscopy, we discovered the Hrp pilus assembly strategy as addition of HrpA subunits to the distal end of the growing pilus, and we showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus thus functions as a conduit delivering proteins to the extracellular milieu. By using phage-display and scanning-insertion mutagenesis methods we identified a conserved HrpZ-binding peptide and localized the peptide-binding site to the central domain of HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. Taken together, the current results provide deeper insight into the molecular mechanism of T3SS-associated pilus assembly and effector protein translocation, which will be helpful for further studies on the pathogenic mechanisms of Gram-negative bacteria and for developing new strategies to prevent bacterial infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of limited sensor and communication ranges, designing efficient mechanisms for cooperative tasks is difficult. In this article, several negotiation schemes for multiple agents performing a cooperative task are presented. The negotiation schemes provide suboptimal solutions, but have attractive features of fast decision-making, and scalability to large number of agents without increasing the complexity of the algorithm. A software agent architecture of the decision-making process is also presented. The effect of the magnitude of information flow during the negotiation process is studied by using different models of the negotiation scheme. The performance of the various negotiation schemes, using different information structures, is studied based on the uncertainty reduction achieved for a specified number of search steps. The negotiation schemes perform comparable to that of optimal strategy in terms of uncertainty reduction and also require very low computational time, similar to 7 per cent to that of optimal strategy. Finally, analysis on computational and communication requirement for the negotiation schemes is carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keratinocytes expressing tumor or viral antigens can be eliminated by antigen-primed CD8 cytotoxic T cells. CD4 T-helper cells help induction of CD8 cytotoxic T cells from naive precursors and generation of CD8 T-cell memory. In this study, we show, unexpectedly, that CD4 cells are also required to assist primed CD8 effector T cells in rejection of skin expressing human growth hormone, a neo-self-antigen, in keratinocytes. The requirement for CD4 cells can be substituted by CD40 costimulation. Rejection of skin expressing ovalbumin (OVA), a non-self-antigen, by primed CD8 cytotoxic T cells can in contrast occur without help from antigen-specific CD4 T cells. However, rejection of OVA expressing keratinocytes is helped by antigen-specific CD4 T cells if only low numbers of primed or naive OVA-specific CD8 T cells are available. Effective immunotherapy directed at antigens expressed in squamous cancer may therefore be facilitated by induction of tumor antigen-specific CD4 helper T cells, as well as cytotoxic CD8 T cells.