920 resultados para quantum dot structures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superradiance (SR), or cooperative spontaneous emission, has been predicted by R. Dicke before the invention of the laser. During the last few years one can see a renaissance of both experimental and theoretical studies of the superradiant phase transition in a variety of media, ranging from quantum dots and Bose condensates through to black holes. Until recently, despite of many years of research, SR has been considered as a phenomenon of pure scientific interest without obvious potential applications. However, recent investigations of the femtosecond SR emission generation from semiconductors have opened up some practical opportunities for the exploitation of this quantum optics phenomenon. Here we present a brief review of some features, advantages and potential applications of the SR generation from semiconductor laser structures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concise quantitative model that incorporates information on both environmental temperature M and molecular structures, for logarithm of octanol-air partition coefficient (K-OA) to base 10 (logK(OA)) of PCDDs, was developed. Partial least squares (PLS) analysis together with 14 quantum chemical descriptors were used to develop the quantitative relationships between structures, environmental temperatures and properties (QRSETP) model. It has been validated that the obtained QRSETP model can be used to predict logK(OA) of other PCDDs. Molecular size, environmental temperature (T), q(+) (the most positive net atomic charge on hydrogen or chlorine atoms in PCDD molecules) and E-LUMO (the energy of the lowest unoccupied molecular orbital) are main factors governing logK(OA) of PCDD/Fs under study. The intermolecular dispersive interactions and thus the size of the molecules play a leading role in governing logK(OA). The more chlorines in PCDD molecules, the greater the logK(OA) values. Increasing E-LUMO values of the molecules leads to decreasing logK(OA) values, implying possible intermolecular interactions between the molecules under study and octanol molecules. Greater q(+) values results in greater intermolecular electrostatic repulsive interactions between PCDD and octanol molecules and smaller logK(OA) values. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The third-order optical nonlinear refractive properties of InAs/GaAs quantum dots grown by molecular beam epitaxy have been measured using the reflection Z-scan technique at above-bandgap energy. The nonlinear refractive index and nonlinear absorption index of the InAs/GaAs quantum dots were determined for wavelengths from 740 to 777 nm. The measured results are compared with the nonlinear refractive response of several typical III-V group semiconductor materials. The corresponding mechanisms responsible for the large nonlinear response are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hole subband structures and effective masses of tensile strained Si/Si1-yGey quantum wells are calculated by using the 6x6 k.p method. The results show that when the tensile strain is induced in the quantum well, the light-hole state becomes the ground state, and the light hole effective masses in the growth direction are strongly reduced while the in-plane effective masses are considerable. Quantitative calculation of the valence intersubband transition between two light hole states in a 7nm tensile strained Si/Si0.55Ge0.45 quantum well grown on a relaxed Si0.5Ge0.5 (100) substrates shows a large absorption coefficient of 8400 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we obtain SiGe quantum dots with the diameters and density of 15-20 nm and 1.8 x 10(11) cm(-2), respectively, by 193 nm excimer laser annealing of Si0.77Ge0.23 strained films. Under the excimer laser annealing, only surface atoms diffusion happens. From the detailed statistical information about the size and shape of the quantum dots with different annealing time, it is shown that the as-grown self-assembled quantum dots, especially the {105}-faceted dots, are not stable and disappear before the appearance of the laser-induced quantum dots. Based on the calculation of surface energy and surface chemical potential, we show that the {103}-faceted as-grown self-assembled quantum dots are more heavily strained than the {105}-faceted ones, and the heavy strain in the dot can decrease the surface energy of the dot facets. The formation of the laser-induced quantum dots, which is also with heavy strain, is attributed to kinetic constraint. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of rutile TiO2 quantum dots (QDs) are investigated via the first-principles band structure method. We first propose a model to passivate the rutile TiO2 surfaces for the local density approximation calculations. In this model pseudohydrogen atoms are used to passivate the surface dangling bonds, which remove the localized in-cap surface states in the TiO2 QDs. As the size of the QD decreases, the band gap evolves as E-g(dot) = E-g(bulk) + 73.70/d(1.93), where E-g(dot) and d are the band gap and diameter of the QD, and E-g(bulk) is the band gap of the bulk rutile TiO2. The valence band maximum and the conduction band minimum states of the QDs are distributed mostly in the interior of the QDs, and they well inherit the atomic characteristics of those states of the bulk rutile TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained a low density of coupled InAs/GaAs quantum dots (QDs) with an emission wavelength of around 1.3 mu m at room temperature. Atomic force microscopy and transmission electronic microscopy reveal that the dot size difference and the lateral displacement between the two dots are related to the spacer thickness. Spectroscopy of the coupled QD ensembles is considerably influenced by the spacer thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering tensile-strained p-type Si/Si1-yGey quantum wells grown on a relaxed Si1-xGex ( 0 0 1) virtual substrate ( y < x), the hole subband structure and the effective masses of the first bound hole state in the quantum wells are calculated by using the 6 x 6 k center dot p method. Designs for tensile-strained p-type quantum well infrared photodetectors ( QWIPs) based on the bound-to-quasi-bound transitions are discussed, which are expected to retain the ability of coupling normally incident infrared radiation without any grating couplers, have lower dark current than n-type QWIPs and also have a larger absorption coefficient and better transport characteristics than normal unstrained or compressive-strained p-type QWIPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite difference time domain (FDTD) method is used for the simulation and analysis of electromagnetic field in the top coupling layer of GaAs/AlGaAs quantum well infrared photodetector (QWIP). Simulation results demonstrated the coupling efficiencies and distributions of electromagnetic (EM) field in a variety of 2D photonic crystal coupling layer structures. A photonic crystal structure for bi-color-QWIP is demonstrated with high coupling efficiency for two wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the molecular beam epitaxy growth of metamorphic InxGa(1-x)As materials (x up to 0.5) on GaAs substrates systematically. Optimization of structure design and growth parameters is aimed at obtaining smooth surface and high optical quality. The optimized structures have an average surface roughness of 0.9-1.8 nm. It is also proven by PL measurements that the optical properties of high indium content (55%) InGaAs quantum wells are improved apparently by defect reduction technique and by introducing Sb as a surfactant. These provide us new ways for growing device quality metamorphic structures on GaAs substrates with long-wavelength emissions.