948 resultados para powders-chemical preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An easy and convenient one-step procedure for the conversion of alpha,beta-unsaturated carbonyl compounds into their corresponding bromo-enones using NBS-Et3N center dot 3HBr in the presence of potassium carbonate in dichloromethane at 0 degrees C to room temperature under very mild conditions in high yields and significantly shorter times, is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial variations in the concentration of a reactive solute in solution are often encountered in a catalyst particle, and this leads to variation in the freezing point of the solution. Depending on the operating temperature, this can result in freezing of the solvent oil a portion of catalyst, rendering that part of the active area ineffective Freezing call occur by formation of a sharp front or it mush that separates the solid and fluid phases. In this paper, we model the extent of reduction in the active area due to freezing. Assuming that the freezing point decreases linearly with solute concentration, conditions for freezing to occur have been derived. At steady state, the ineffective fraction of catalyst pellet is found to be the same irrespective of the mode of freezing. Progress of freezing is determined by both the heat of reaction and the latent heat of fusion Unlike in freezing of alloys where the latter plays a dominant role, the exothermicity of the reaction has a significant effect on freezing in the presence of chemical reactions. A dimensionless group analogous to the Stefan number could be defined to capture the combined effect of both of these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the effect of two solvents, namely dimethyl formamide (DMF) and N-methyl pyrrolidone (NMP), on the dispersion effectiveness and the resulting electrical and mechanical properties of multi-walled carbonanotubes (MNCNT) filled structural adhesive grade epoxy nanocomposites was studied. The solvents were used mainly to reduce the viscosity of the resin system to effectively disperse the nanofiller. The dispersion was carried out under vacuum using high energy sonic waves. SEM was undertaken to study the dispersion effectiveness. Electrical resistivity, tensile properties, and glass transition of the nanocomposites were studied. Between DMF and NMP, the former proved better in terms of dispersion effectiveness and the resulting electrical and mechanical properties of the nanocomposites. Addition of MWCNT into AV138M resulted in an increase in glass transition temperature irrespective of the solvent used and in both cases percolation threshold was found with respect to reduction in electrical resistivity of the nanocomposites. Less agglomeration and hence better interaction between CNT and epoxy was observed in the samples prepared using DMF compared with that using NMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700-1100 degrees C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS)thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 degrees C. normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 degrees C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A versatile affinity matrix in which the ligand of interest is linked to the matrix through a connector arm containing a disulfide bond is described. It can be synthesized from any amino-substituted matrix by successive reaction with 2-imino-thio-lane, 5, 5'-dithiobis(2-nitrobenzoic acid), and a thiol derivative of the ligand of choice. The repertoire of ligands can be significantly increased by the appropriate use of avidin-biotin bridges. After adsorption of the material to be fractionated, elution can be effected by reducing the disulfide bond in the connector arm with dithiothreitol. Examples of the preparation and use of various affinity matrices based on amino-substituted Sepharose 6MB are given. One involves the immobilization of the Fab' fragment of a monoclonal antibody against Aspergillus oryzae β-galactosidase and the specific binding of that enzyme to the resulting immunoaffinity matrix. Another involves the immobilization of N-biotinyl-2-thioethylamine followed by complex formation with avidin. The resulting avidin-substituted matrix was used for the selective adsorption and subsequent recovery of mouse hybridoma cells producing anti-avidin antibodies. By further complexing the avidin-substituted matrix with appropriate biotinylated antigens, it should be possible to fractionate cells producing antibodies against a variety of antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benzylic methylene protons in a large number of benzyloxycarbonyl alpha-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 leads to 1 hydrogen bonded beta-turn is not possible, the benzylic-CH2-protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro beta-turn is retained in large peptide-fragments of alamethicin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the preceding paper' we described the preparation of the key lactone intermediate la in optically active form. In this paper we report the synthesis of erythromycin (2) from la. In essence,this transformation involves the glycosidation of a suitable derivative of la with L-cladinose and D-desosamine and the generation of the C-9 ketone functionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their unique size- and shape-dependent physical and chemical properties, highly hierarchically-ordered nanostructures have attracted great attention with a view to application in emerging technologies, such as novel energy generation, harvesting, and storage devices. The question of how to get controllable ensembles of nanostructures, however, still remains a challenge. This concept paper first summarizes and clarifies the concept of the two-step self-assembly approach for the synthesis of hierarchically-ordered nanostructures with complex morphology. Based on the preparation processes, two-step self-assembly can be classified into two typical types, namely, two-step self-assembly with two discontinuous processes and two-step self-assembly completed in one-pot solutions with two continuous processes. Compared to the conventional one-step self-assembly, the two-step self-assembly approach allows the combination of multiple synthetic techniques and the realization of complex nanostructures with hierarchically-ordered multiscale structures. Moreover, this approach also allows the self-assembly of heterostructures or hybrid nanomaterials in a cost-effective way. It is expected that widespread application of two-step self-assembly will give us a new way to fabricate multifunctional nanostructures with deliberately designed architectures. The concept of two-step self-assembly can also be extended to syntheses including more than two chemical/physical reaction steps (multiple-step self-assembly).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new procedure for the preparation of amorphous Ni-Co-B nanoparticles is reported, with a detailed investigation of their morphology by X-ray diffraction and transmission electron microscopy, as well as their magnetic properties. Many factors, such as chemical composition, anisotropy, size and shape of the particles, were controlled through chemical synthesis, resulting in the control of morphological and magnetic properties of the nanoparticles. Controlling pH values with ethylenediamine and using sodium dodecyl sulfate surfactant lowered the size of the nanoparticles to below 10 nm. Such a small structure and chemical disorder in nanocrystalline materials lead to magnetic properties that are different from those in their bulk-sized counterparts. The obtained nanoparticles can be used for different purposes, from pharmaceutical applications to implementations in different materials technology. The focus of this research is the synthesis of Ni-Co-B nanoparticles in a new way and studying the reaction of Ni-Co-B nanoparticles with Mg and B precursors and their effect on MgB2 properties. New nanostructures are formed in the reaction of Ni-Co-B nanoparticles with Mg: Mg2Ni, Co2Mg and possibly Mg2Co.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficult sintering of BaZr0.8Y0.2O 3-δ (BZY20) powders makes the fabrication of anode-supported BZY20 electrolyte films complex. Dense BZY20 membranes were successfully fabricated on anode substrates made of sinteractive NiO-BZY20 powders, prepared by a combustion method. With respect to traditional anode substrates made of powders prepared by mechanical mixing, the anode substrates made of the wet-chemically synthesized composite NiO-BZY20 powders significantly promoted the densification of BZY20 membranes: dense BZY20 films were obtained after co-pressing and co-firing at 1300 °C, a much lower temperature than those usually needed for densifying BZY20 membranes. Improved electrochemical performance was also observed: the supported BZY20 films maintained a high proton conductivity, up to 5.4 × 10-3 S cm-1 at 700 °C. Moreover, an anode-supported fuel cell with a 30 m thick BZY20 electrolyte film fabricated at 1400 °C on the anode made of the wet-chemically synthesized NiO-BZY20 powder showed a peak power density of 172 mW cm-2 at 700 °C, using La0.6Sr0.4Co 0.2Fe0.8O3-δ-BaZr0.7Y 0.2Pr0.1O3-δ as the cathode material, with a remarkable performance for proton-conducting solid oxide fuel cell (SOFC) applications.