911 resultados para poly(propylene oxide-b-ethylene oxide)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the hemodynamic effects of L-canavanine (an inhibitor of inducible, but not of constitutive, nitric oxide synthase) in endotoxic shock. DESIGN: Controlled, randomized, experimental study. SETTING: Animal laboratory. SUBJECTS: Wistar rats. INTERVENTIONS: Rats were anesthetized with pentobarbital, and hemodynamically monitored. One hour after an intravenous challenge with 5 mg/kg of Escherichia coli endotoxin, the rats were randomized to receive a continuous infusion of either L-canavanine (20 mg/kg/hr; n = 8) or vehicle only (isotonic saline, n = 11). In all animals, the infusion was given over 5 hrs at a rate of 2 mL/kg/hr. These experiments were repeated in additional rats challenged with isotonic saline instead of endotoxin (sham experiments). MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, heart rate, thermodilution cardiac output, central venous pressure, mean systemic filling pressure, urine output, arterial blood gases, blood lactate concentration, and hematocrit were measured. In sham experiments, hemodynamic stability was maintained throughout and L-canavanine had no detectable effect. Animals challenged with endotoxin and not treated with L-canavanine developed progressive hypotension and low cardiac output. After 6 hrs of endotoxemia, both central venous pressure and mean systemic filling pressure were significantly below their baseline values, indicating relative hypovolemia as the main determinant of reduced cardiac output. In endotoxemic animals treated with L-canavanine, hypotension was less marked, while cardiac output, central venous pressure, and mean systemic filling pressure were maintained throughout the experiment. L-canavanine had no effect on the time-course of hematocrit. L-canavanine significantly increased urine output and reduced the severity of lactic acidosis. CONCLUSIONS: Six hours after an endotoxin challenge in rats, low cardiac output develops, which appears to be primarily related to relative hypovolemia. L-canavanine, a selective inhibitor of the inducible nitric oxide synthase, increases the mean systemic filling pressure, thereby improving venous return, under these conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our purpose is to determine the inflammatory changes in the airways of allergic paediatric asthma patients treated with omalizumab, measured by the percentage of eosinophils in induced sputum and exhaled nitric oxide (FENO). We observed a progressive and statistically significant decrease of eosinophil count in the induced sputum meanwhile FENO, although very sensible, was a less reproducible and thus a less reliable method to evaluate chronic airway inflammation in this population. Induced sputum seems to be a better method to monitor chronic inflammation and thus the response to chronic omalizumab treatment while FENO measurement would be more useful to monitor acute events preceding exacerbations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In proton magnetic resonance imaging (MRI) metallic substances lead to magnetic field distortions that often result in signal voids in the adjacent anatomic structures. Thus, metallic objects and superparamagnetic iron oxide (SPIO)-labeled cells appear as hypointense artifacts that obscure the underlying anatomy. The ability to illuminate these structures with positive contrast would enhance noninvasive MR tracking of cellular therapeutics. Therefore, an MRI methodology that selectively highlights areas of metallic objects has been developed. Inversion-recovery with ON-resonant water suppression (IRON) employs inversion of the magnetization in conjunction with a spectrally-selective on-resonant saturation prepulse. If imaging is performed after these prepulses, positive signal is obtained from off-resonant protons in close proximity to the metallic objects. The first successful use of IRON to produce positive contrast in areas of metallic spheres and SPIO-labeled stem cells in vitro and in vivo is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adrenal chromaffin cells synthesize and secrete catecholamines and neuropeptides that may regulate hormonal and paracrine signaling in stress and also during inflammation. The aim of our work was to study the role of the cytokine interleukin-1beta (IL-1beta) on catecholamine release and synthesis from primary cell cultures of human adrenal chromaffin cells. The effect of IL-1beta on neuropeptide Y (NPY) release and the intracellular pathways involved in catecholamine release evoked by IL-1beta and NPY were also investigated. We observed that IL-1beta increases the release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells. Moreover, the immunoneutralization of released NPY inhibits catecholamine release evoked by IL-1beta. Moreover, IL-1beta regulates catecholamine synthesis as the inhibition of tyrosine hydroxylase decreases IL-1beta-evoked catecholamine release and the cytokine induces tyrosine hydroxylase Ser40 phosphorylation. Moreover, IL-1beta induces catecholamine release by a mitogen-activated protein kinase (MAPK)-dependent mechanism, and by nitric oxide synthase activation. Furthermore, MAPK, protein kinase C (PKC), protein kinase A (PKA), and nitric oxide (NO) production are involved in catecholamine release evoked by NPY. Using human chromaffin cells, our data suggest that IL-1beta, NPY, and nitric oxide (NO) may contribute to a regulatory loop between the immune and the adrenal systems, and this is relevant in pathological conditions such as infection, trauma, stress, or in hypertension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Nitric oxide (NO) regulates arterial pressure by modulating peripheral vascular tone and sympathetic vasoconstrictor outflow. NO synthesis is impaired in several major cardiovascular disease states. Loss of NO-induced vasodilator tone and restraint on sympathetic outflow could result in exaggerated pressor responses to mental stress. METHODS: We, therefore, compared the sympathetic (muscle sympathetic nerve activity) and haemodynamic responses to mental stress performed during saline infusion and systemic inhibition of NO-synthase by NG-monomethyl-L-arginine (L-NMMA) infusion. RESULTS: The major finding was that mental stress which during saline infusion increased sympathetic nerve activity by ~50 percent and mean arterial pressure by ~15 percent had no detectable sympathoexcitatory and pressor effect during L-NMMA infusion. These findings were not related to a generalised impairment of the haemodynamic and/or sympathetic responsiveness by L-NMMA, since the pressor and sympathetic nerve responses to immersion of the hand in ice water were preserved during L-NMMA infusion. CONCLUSION: Mental stress causes pressor and sympathoexcitatory effects in humans that are mediated by NO. These findings are consistent with the new concept that, in contrast to what has been generally assumed, under some circumstances, NO has a blood pressure raising action in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maghemite (γFe2O3) from tuffite is exceptionally rich in Mg, relatively to most of those reportedly found in other mafic lithosystems. To investigate in detail the compositional and structural variabilities of this natural magnetic iron oxide, sets of crystals were isolated from samples collected at different positions in a tuffite weathering mantle. These sets of crystal were individually powdered and studied by X-ray diffractometry, Mössbauer spectroscopy, magnetization measurements and chemical analysis. Lattice parameter of the cubic cell (a0) was found to vary from 0.834(1) to 0.8412(1) nm. Lower a0-values are characteristic of maghemite whereas higher ones are related to a magnetite precursor. FeO content ranges up to 17 mass % and spontaneous magnetization ranges from 8 to 32 J T-1 kg-1. Zero-field room temperature Mössbauer spectra are rather complex, indicating that the hyperfine field distributions due to Fe3+ and mixed valence Fe3+/2+ overlap. The structural variabilities of the (Mg, Ti)-rich iron oxide spinels is essentially related to the range of chemical composition of its precursor (Mg, Ti)-rich magnetite, and probably to the extent to which it has been oxidized during transformation in soil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of intraocular administration of nitric oxide (NO) donors in the rabbit eye on intraocular pressure (IOP), inflammation, and toxicity. METHODS: Intravitreal and intracameral injections of two NO donors, SIN-1 and SNAP, and SIN-1C and BSS were performed. Clinical examination, IOP measurements, protein evaluation in aqueous humor, and histologic analysis of the ocular globes were realized. Nitric oxide release was demonstrated by nitrite production in the aqueous humor and in the vitreous using the Griess reaction. RESULTS: The drastic decrease of IOP, observed after a single NO donor injection, was correlated directly with nitrite production and, thus, to NO release. Injection of inactive metabolite of SIN-1, SIN-1C, which is not able to release NO, did not modulate IOP. When administered in the aqueous humor or in the vitreous, NO did not diffuse from one segment of the eye to another. No inflammation or histologic damage was observed as a result of a single NO donor administration. CONCLUSIONS: Nitric oxide is implicated directly in the regulation of IOP and its acute, and massive release into the rabbit eye did not induce inflammation or other growth toxic effects on the ocular tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension and death. Administration of nitric oxide (NO) alone remains ineffective in CDH cases. We investigated in near full-term lambs with and without CDH the role of guanylate cyclase (GC), the enzyme activated by NO in increasing cyclic 3'-5'-guanylosine monophosphate, and the role of phosphodiesterase (PDE) 5, the enzyme-degrading cyclic 3'-5'-guanylosine monophosphate. METHODS: Congenital diaphragmatic hernia was surgically created in fetal lambs at 85 days of gestation. Pulmonary hemodynamics were assessed by means of pressure and blood flow catheters (135 days). In vitro, we tested drugs on rings of isolated pulmonary vessels. RESULTS: In vivo, sodium nitroprusside, a direct NO donor, and methyl-2(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5 trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032) and Zaprinast, both PDE 5 blockers, reduced pulmonary vascular resistance in CDH and non-CDH animals. The activation of GC by sodium nitroprusside and the inhibition of PDE 5 by T-1032 were less effective in CDH animals. In vitro, the stimulation of GC by 3(5'hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) (a benzyl indazole derivative) and the inhibition of PDE 5 by T-1032 were less effective in pulmonary vascular rings from CDH animals. The YC-1-induced vasodilation in rings from CDH animals was higher when associated with the PDE 5 inhibitor T-1032. CONCLUSIONS: Guanylate cyclase and PDE 5 play a role in controlling pulmonary vascular tone in fetal lambs with or without CDH. Both enzymes seem to be impaired in fetal lambs with CDH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obesity, insulin resistance and associated cardiovascular complications are reaching epidemic proportions worldwide and represent a major public health problem. Over the past decade, evidence has accumulated indicating that insulin administration, in addition to its metabolic effects, also has important cardiovascular actions. The sympathetic nervous system and the L-arginine-nitric oxide pathway are the central players in the mediation of insulin's cardiovascular actions. Based on recent animal and human research, we demonstrate that both defective and augmented NO synthesis represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states. These observations provide the rationale for the use of pharmaceutical drugs releasing small and physiological amounts of NO and/or inhibitors of NO overproduction as a future treatment for insulin resistance and associated comorbidities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4(+) Th1 cells producing gamma interferon (IFN-gamma) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF(-/-) mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF(-/-), gld TNF(-/-), and gld mice, but only gld and gld TNF(-/-) mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF(-/-) mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-gamma for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF(-/-) mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-gamma, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tin-oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800°C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking. We therefore measured systolic pulmonary-artery pressure (Doppler chocardiography) and exhaled nitric oxide (NO) in 34 healthy, middle-aged Bolivian high altitude natives and in 34 age- and sex-matched, well-acclimatized Caucasian low altitude natives living at high altitude (3600 m). The mean+/-SD systolic right ventricular to right atrial pressure gradient (24.3+/-5.9 vs. 24.7+/-4.9 mmHg) and exhaled NO (19.2+/-7.2 vs. 22.5+/-9.5 ppb) were similar in Bolivians and Caucasians. There was no relationship between pulmonary-artery pressure and respiratory NO in the two groups. These findings provide no evidence that Bolivian high altitude natives are better protected from hypoxic pulmonary hypertension than Caucasian low altitude natives and suggest that attenuation of pulmonary hypertension by increased respiratory NO synthesis may not represent a universal adaptation pattern in highaltitude populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to lowcost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options. ©2011 Optical Society of America OCIS codes: (230.2090) Electro-optical devices; (150.2950) Illumination.