926 resultados para optical spectrum analyzer
Resumo:
Lead Telluride (PbTe) nanorods have been uniformly grown on silicon substrates, using the thermal evaporation technique under high vacuum conditions. The structural and morphological studies are done using X-ray diffraction and scanning electron microscopy. Optical nonlinearity studies using the open aperture z-scan employing 5 ns and 100 fs laser pulses reveal a three-photon type absorption. For nanosecond excitation the nonlinear absorption coefficients (gamma) are in the order of 10(-22) m(3) W-2 and for femtosecond excitation it is in the order of 10(-29) m(3) W-2. The role of free carriers and excitons in causing the nonlinearity in both excitation time domains is discussed. Results indicate that PbTe nanorods are good optical limiters with potential device applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We briefly review the growth and structural properties of View the MathML source bulk single crystals and View the MathML source epitaxial films grown on semi-insulating GaAs substrates. Temperature-dependent transport measurements on these samples are then correlated with the information obtained from structural (XRD, TEM, SEM) and optical (FTIR absorption) investigations. The temperature dependence of mobility and the Hall coefficient are theoretically modelled by exactly solving the linearized Boltzmann transport equation by inversion of the collision matrix and the relative role of various scattering mechanisms in limiting the low temperature and View the MathML source mobility is estimated. Finally, the first observation of Shubnikov oscillations in InAsSb is discussed.
Resumo:
ZnO:Al thin films were prepared on glass and silicon substrates by the sol-gel spin coating method. The x-ray diffraction (XRD) results showed that a polycrystalline phase with a hexagonal structure appeared after annealing at 400 degrees C for 1 h. The transmittance increased from 91 to about 93% from pure ZnO films to ZnO film doped with 1 wt% Al and then decreased for 2 wt% Al. The optical band gap energy increased as the doping concentration was increased from 0.5 wt% to 1 wt% Al. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased and the leakage current increased with an increase of annealing temperature. The dielectric constant was found to be 3.12 measured at 1 MHz. The dissipation value for the film annealed at 300 degrees C was found to be 3.1 at 5 V. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electrical switching behavior of amorphous GexSe35-xTe65 thin film samples has been studied in sandwich geometry of electrodes. It is found that these samples exhibit memory switching behavior, which is similar to that of bulk Ge-Se-Te glasses. As expected, the switching voltages of GexSe35-xTe65 thin film samples are lower compared to those of bulk samples. In both thin film amorphous and bulk glassy samples, the switching voltages are found to increase with the increase in Ge concentration, which is consistent with the increase in network connectivity with the addition of higher coordinated Ge atoms. A sharp increase is seen in the composition dependence of the switching fields of amorphous GexSe35-xTe65 films above x = 21, which can be associated with the stiffness transition. Further, the optical band gap of a-GexSe35-x Te-65 thin film samples, calculated from the absorption spectra, is found to show an increasing trend with the increase in Ge concentration, which is consistent with the variation of switching fields with composition. The increase in structural cross-linking with progressive addition of 4-fold coordinated Ge atoms is one of the main reasons for the observed increase in switching fields as well as band gaps of GexSe35-xTe65 samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]
Resumo:
We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3598413]
Resumo:
Zn(1-x)Fe(x)O(1+0.5x) (x = 0.5-5 mol%) nanoparticles were synthesized by a low temperature solution combustion route. The structural characterization of these nanoparticles by PXRD, SEM and TEM confirmed the phase purity of the samples and indicated a reduction in the particle size with increase in Fe content. A small increase in micro strain in the Fe doped nanocrystals is observed from W-H plots. EPR spectrum exhibits an intense resonance signal with effective g values at g approximate to 2.0 with a sextet hyperfine structure (hfs) besides a weak signal at g approximate to 4.13. The signal at g approximate to 2.0 with a sextet hyperfine structure might be due to manganese impurity where as the resonance signal at g approximate to 4.13 is due to iron. The optical band gap E-g was found to decrease with increase of Fe content. Raman spectra exhibit two non-polar optical phonon (E-2) modes at low and high frequencies at 100 and 435 cm(-1) in Fe doped samples. These modes broaden and disappear with increase of Fe do pant concentration. TL measurements of gamma-irradiated (1-5 kGy) samples show a main glow peak at 368 degrees C at a warming rate of 6.7 degrees Cs-1. The thermal activation parameters were estimated from Glow peak shape method. The average activation energy was found to be in the range 0.34-2.81 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.
Resumo:
Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant. (c) 2012 Optical Society of America
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
The altered spontaneous emission of an emitter near an arbitrary body can be elucidated using an energy balance of the electromagnetic field. From a classical point of view it is trivial to show that the field scattered back from any body should alter the emission of the source. But it is not at all apparent that the total radiative and non-radiative decay in an arbitrary body can add to the vacuum decay rate of the emitter (i.e.) an increase of emission that is just as much as the body absorbs and radiates in all directions. This gives us an opportunity to revisit two other elegant classical ideas of the past, the optical theorem and the Wheeler-Feynman absorber theory of radiation. It also provides us alternative perspectives of Purcell effect and generalizes many of its manifestations, both enhancement and inhibition of emission. When the optical density of states of a body or a material is difficult to resolve (in a complex geometry or a highly inhomogeneous volume) such a generalization offers new directions to solutions. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.