915 resultados para nonlinear optical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical frequency combs (OFCs) provide direct phase-coherent link between optical and RF frequencies, and enable precision measurement of optical frequencies. In recent years, a new class of frequency combs (microcombs) have emerged based on parametric frequency conversions in dielectric microresonators. Micocombs have large line spacing from 10's to 100's GHz, allowing easy access to individual comb lines for arbitrary waveform synthesis. They also provide broadband parametric gain bandwidth, not limited by specific atomic or molecular transitions in conventional OFCs. The emerging applications of microcombs include low noise microwave generation, astronomical spectrograph calibration, direct comb spectroscopy, and high capacity telecommunications.

In this thesis, research is presented starting with the introduction of a new type of chemically etched, planar silica-on-silicon disk resonator. A record Q factor of 875 million is achieved for on-chip devices. A simple and accurate approach to characterize the FSR and dispersion of microcavities is demonstrated. Microresonator-based frequency combs (microcombs) are demonstrated with microwave repetition rate less than 80 GHz on a chip for the first time. Overall low threshold power (as low as 1 mW) of microcombs across a wide range of resonator FSRs from 2.6 to 220 GHz in surface-loss-limited disk resonators is demonstrated. The rich and complex dynamics of microcomb RF noise are studied. High-coherence, RF phase-locking of microcombs is demonstrated where injection locking of the subcomb offset frequencies are observed by pump-detuning-alignment. Moreover, temporal mode locking, featuring subpicosecond pulses from a parametric 22 GHz microcomb, is observed. We further demonstrated a shot-noise-limited white phase noise of microcomb for the first time. Finally, stabilization of the microcomb repetition rate is realized by phase lock loop control.

For another major nonlinear optical application of disk resonators, highly coherent, simulated Brillouin lasers (SBL) on silicon are also demonstrated, with record low Schawlow-Townes noise less than 0.1 Hz^2/Hz for any chip-based lasers and low technical noise comparable to commercial narrow-linewidth fiber lasers. The SBL devices are efficient, featuring more than 90% quantum efficiency and threshold as low as 60 microwatts. Moreover, novel properties of the SBL are studied, including cascaded operation, threshold tuning, and mode-pulling phenomena. Furthermore, high performance microwave generation using on-chip cascaded Brillouin oscillation is demonstrated. It is also robust enough to enable incorporation as the optical voltage-controlled-oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. Finally, applications of microresonators as frequency reference cavities and low-phase-noise optomechanical oscillators are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb3 skutterudites.

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in ZrNiSn).

I also show that CoSb3 contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for T>500 K. This implies that the electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear switching characteristics of fused fiber directional couplers were studied experimentally. By using femtosecond laser pulses with pulse width of 100 fs and wavelength of about 1550 nm from a system of Ti:sapphire laser and optical parametric amplifier (OPA), the nonlinear switching properties of a null coupler and a 100% coupler were measured. The experimental results were coincident with the simulations based on nonlinear propagation equations in fiber by using super-mode theory. Nonlinear loss in fiber was also measured to get the injected power at the coupler. After deducting the nonlinear loss and input efficiency, the nonlinear switching critical peak powers for a 100% and a null fused couplers were calculated to be 9410 and 9440 W, respectively. The nonlinear loss parameter P_(N) in an expression of α_(NL)=αP/P_(N) was obtained to be P_(N)=0.23 W.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel GeS2-Ga2S3-AgCl chalcohalide glasses had been prepared by melt-quenching technique, and the glass-forming region was determined by XRD, which indicated that the maximum of dissolvable AgCl was up to 65 mol%. Thermal and optical properties of the glasses were studied by differential scanning calorimetry (DSC) and Visible-IR transmission, which showed that most of GeS2-Ga2S3-AgCl glasses had strong glass-forming ability and broad region of transmission (about 0.45-12.5 mu m). With the addition of AgCl, the glass transition temperature, Tg decreases distinctly, and the short-wavelength cut-off edge (lambda(vis)) of the glasses also shifts to the long wavelength gradually. However, the glass-forming ability of the glass has a complicated evolutional trend depended on the compositional change. In addition, the values of the Vickers microhardness, H (v) , which decrease with the addition of AgCl, are high enough for the practical applications. These excellent properties of GeS2-Ga2S3-AgCl glasses make them potentially applied in the optoelectronic field, such as all-optical switch, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of silanes, 3-glycidoxypropyltrimethoxysilane (GLYMO) and 3-trimethoxysililpropylmethacrylate (TMSPM), were used to prepare ormosil waveguide films by the sol-gel method. Thirty percent Ti(OBu)(4) and 70% silane were contained in the precursor sets. The properties of films were measured by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), m-line and scattering-detection method. The films from GLYMO and TMSPM precursors exhibit similar thickness (2.58 mu m for GLYMO, 2.51 mu m for TMSPM) and refractive index (1.5438 for GLYMO, 1.5392 for TMSPM, lambda=632.8 nm), but the film from TMSPM precursor has higher propagation loss (1.024 dB/cm, lambda=632.8 nm) than the film prepared from GLYMO (0.569 dB/cm, lambda=632.8 nm). Furthermore, the film prepared from TMSPM is easy to be opaque and cracks during coating whereas the same phenomenon was not found for the film prepared with GLYMO. It is confirmed that GLYMO is a better precursor than TMSPM for waveguide film preparation. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 tellurite glass system was prepared and their density, characteristic temperatures and optical properties were determined and investigated. For the TeO2-BaO-La2O3-Er2O3 system, composition with 10 mol% BaO presented the highest thermal stability and good infrared transmittance. Intense and broad 1.53 mu m infrared fluorescence were observed under 977 nm diode laser excitation and the most full width at half-maximum (FWHM) is similar to 60nm. According to absorption spectrum, we calculated the optical parameters by means of Judd-Ofelt and McCumber theory such as the fluorescence lifetimes which are about 2.72-3.25 ms and the maximum emission cross-sections which are similar to 1.0pm(2) at 1.531 mu m. The sigma(e) x FWHM value of composition with 10 mol% BaO for gain bandwidth is similar to 600 exceeding those in silicon and phosphate glasses. Our results indicated this kind of tellurite glasses could be used as an ideal host glass for optical amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er 2O3 thin films deposited by magnetron sputtering have been studied. In spite of the well-known high reactivity of rare earth oxides towards silicon, films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the silicon substrate. The evolution of the properties of the Er2O3 films due to thermal annealing processes in oxygen ambient performed at temperatures in the range of 800-1200°C has been investigated in detail. The existence of well defined annealing conditions (rapid treatments at a temperature of 1100°C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated; under these conditions, the thermal process has a beneficial effect on both structural and optical properties of the film, and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as-deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. Finally, the conditions leading to a reaction of Er2O3 with the substrate have been also identified, and evidences about the formation of silicate-like phases have been collected. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractive nonlinearities of InAs/GaAs quantum dots under a dc electric field at photon energies above its band gap energy have been studied using the reflection Z-scan technique. The effect of the dc electric field on the nonlinear response of InAs/GaAs quantum dots showed similar linear and quadratic electro-optic effects as in the linear response regime at low fields. This implies that the electro-optic effect in the nonlinear regime is analogous to the response in the linear regime for semiconductor quantum dots. Our experimental results show the potential for voltage tunability in InAs quantum dot-based nonlinear electro-optic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the effective-mass Hamiltonian for an arbitrary direction wurtzite semiconductor on the basis of k.p theory, we investigate the strain effects on the transition energies and optical properties in the R-plane ([1012]-oriented plane) GaN. The results show that (1) the transition energies decrease with the biaxial strains changing from -0.5 to 0.5%; and (2) giant optical anisotropy appears in the R-plane which is significantly affected by the biaxial strains. We clarify the relation between the strains and the polarization properties. Finally, we discuss the application of these properties to the R-plane GaN based devices. (c) 2009 The Japan Society of Applied Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled semiconductor quantum dot is a new type of artificially designed and grown function material which exhibits quantum size effect, quantum interference effect, surface effect, quantum tunneling-Coulumb-blockade effect and nonlinear optical effect. Due to its advantages of less crystal defects and relatively simpler fabrication technology, this material may be of important value in the research of future nanoelectronic device. In the order of vertical transport, lateral transport and charge storage, recent advances in the electronic properties of this material are brefly introduced, and the problems and perspectives are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlxInyGa1-x-yN epilayers have been grown by metalorganic chemical vapor deposition (MOCVD) at different temperatures from 800 to 870degreesC. The incorporation of indium is found to increase with decreasing growth temperature, while the incorporation of Al remains nearly constant. The optical properties of the samples have been investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL) at different temperatures. The results show that the sample grown at 820 C exhibits the best optical quality for its large PL intensity and the absence of the yellow luminescence. Furthermore the temperature-dependent PL and TRPL of the sample reveals its less exciton localization effect caused by alloy fluctuations. In the scanning electron microscopy measurement, much uniform surface morphology is found for the sample grown at 820degreesC, in good agreement with the PL results, The improvement of AlxInyGa1-x-yN quality is well correlated with the incorporation of indium into AlGaN and the possible mechanism is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.