890 resultados para monotone estimating


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente dissertação foi realizada em colaboração com o grupo empresarial Monteiro, Ribas, tendo como principal objectivo a realização de uma auditoria à gestão dos resíduos industriais produzidos pelas suas fábricas localizadas na Estrada da Circunvalação, no Porto. Para cumprir este objectivo, inicialmente foi efectuado um levantamento das obrigações legais relativas aos resíduos e foram procuradas práticas aconselhadas para a gestão interna. Para cada uma das fábricas, verificaram-se, quais os resíduos produzidos e analisaram-se os seus percursos, considerando as suas origens, os locais e modos de acondicionamento na origem, os modos de transporte interno, os locais e modos de armazenagem preliminar, e ainda, as quantidades produzidas, os transportadores, os operadores finais e as operações finais de gestão, sendo que estas quatro últimas informações são relativas ao ano 2013. De seguida procedeu-se à realização da auditoria nas diferentes unidades, verificando o cumprimento dos requisitos legais e das boas práticas em matéria de gestão de resíduos. As principais não conformidades detectadas, comuns às várias unidades fabris foram a inexistência de local/recipiente definido para acondicionamento de alguns resíduos, a falta ou insuficiente identificação de recipientes/zonas de acondicionamento, a inexistência de bacias de retenção para resíduos líquidos perigosos, o facto de no transporte interno apenas os resíduos perigosos serem cobertos e, os resíduos líquidos perigosos não serem transportados sobre bacias de retenção móveis nem com o material necessário para absorver derrames. Para cada resíduo e para cada unidade industrial foram propostas medidas correctivas e/ou de melhoria, quando aplicável. Relativamente à armazenagem preliminar, a principal inconformidade detectada foi o facto de todos os parques (quatro) possuírem resíduos perigosos no momento das auditorias, o que não é adequado. Foram propostas medidas correctivas e/ou de melhoria para cada parque. Como proposta global, tendo em conta factores económicos e de segurança, sugeriu-se que apenas o parque de resíduos perigosos possa armazenar este tipo de resíduos, pelo que os procedimentos de transporte interno devem ser melhorados, fazendo com que estes resíduos sejam transportados directamente para o parque de resíduos perigosos. Desta forma dois dos parques devem sofrer algumas remodelações, nomeadamente serem cobertos e fechados, ainda que não totalmente, e o parque de resíduos perigosos deve ser fechado, mantendo aberturas para ventilação, deve ser equipado com kit´s de contenção de derrames, fichas de segurança, procedimentos a realizar em caso de emergência, e ainda, devido ao facto do sistema de contenção de derrames ser pequeno face ao total de armazenamento, aconselha-se o uso de bacias de retenção para alguns dos recipientes de resíduos líquidos perigosos. Ao longo deste processo e em consequência da realização da auditoria, algumas situações consideradas não conformes foram sendo corrigidas. Também foram preparadas instruções de trabalho adequadas que serão posteriormente disponibilizadas. Foi ainda elaborada uma metodologia de avaliação de processos como base de trabalho para redução dos resíduos gerados. A etapa escolhida para a aplicação da mesma foi uma etapa auxiliar do processo produtivo da Monteiro, Ribas - Revestimentos, S.A - a limpeza de cubas com solventes, por forma a tentar minimizar os resíduos de solventes produzidos nesta operação. Uma vez que a fábrica já realiza a operação tendo em consideração medidas de prevenção e reutilização, a reciclagem é neste momento a única forma de tentar minimizar os resíduos de solventes. Foram então estudadas duas opções, nomeadamente a aquisição de um equipamento de regeneração de solventes e a contratação de uma operadora que proceda à regeneração dos resíduos de solventes e faça o retorno do solvente regenerado. A primeira opção poderá permitir uma redução de cerca de 95% na produção de resíduos de solventes e na aquisição de solvente puro, estimando-se uma poupança anual de cerca de **** €, com um período de recuperação do capital de cerca de 16 meses e a segunda pode conduzir a uma redução significativa na aquisição de solvente puro, cerca de 65%, e a uma poupança anual de cerca de **** €.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia