907 resultados para microneedles, ocular drug delivery, FITC-dextran, cornea, sclera, polyvinylpyrrolidone (PVP).


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the constant expansion within the nanotechnology industry in the last decade, nanomaterials are omnipresent in society today. Nanotechnology-based products have numerous different applications ranging from electronic (e.g., advanced memory chips) to industrial (e.g., coatings or composites) to biomedical (e.g., drug delivery systems, diagnostics). Although these new nanomaterials can be found in many "everyday" products, their effects on the human body have still to be investigated in order to identify not only their risk, but also their potential benefits towards human health. Since the lung is commonly thought to be the main portal of entry into the human body for nanomaterials released within the environment, this review will attempt to summarise the current knowledge and understanding of how nanomaterials interact with the respiratory tract. Furthermore, the advantages and disadvantages of different experimental model systems that are commonly used to study this exposure route to the human body will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of pharmaceutical care is identified through a complete review of the literature published in the American Journal of Health-System Pharmacy, the sole comprehensive publication of institutional pharmacy practice. The evolution is categorized according to characteristics of structure (organizational structure, the role of the pharmacist), process (drug delivery systems, formulary management, acquiring drug products, methods to impact drug therapy decisions), and outcomes (cost of drug delivery, cost of drug acquisition and use, improved safety, improved health outcomes) recorded from the 1950s through the 1990s. While significant progress has been made in implementing basic drug distribution systems, levels of pharmacy involvement with direct patient care is still limited.^ A new practice framework suggests enhanced direct patient care involvement through increase in the efficiency and effectiveness of traditional pharmacy services. Recommendations advance internal and external organizational structure relationships that position pharmacists to fully use their unique skills and knowledge to impact drug therapy decisions and outcomes. Specific strategies facilitate expansion of the breadth and scope of each process component in order to expand the depth of integration of pharmacy and pharmaceutical care within the broad healthcare environment. Economic evaluation methods formally evaluate the impact of both operational and clinical interventions.^ Outcome measurements include specific recommendations and methods to increase efficiency of drug acquisition, emphasizing pharmacists' roles that impact physician prescribing decisions. Effectiveness measures include those that improve safety of drug distribution systems, decrease the potential of adverse drug therapy events, and demonstrate that pharmaceutical care can significantly contribute to improvement in overall health status.^ The implementation of the new framework is modeled on a case study at the M.D. Anderson Cancer Center. The implementation of several new drug distribution methods facilitated the redeployment of personnel from distributive functions to direct patient care activities with significant personnel and drug cost reduction. A cost-benefit analysis illustrates that framework process enhancements produced a benefit-to-cost ratio of 7.9. In addition, measures of effectiveness demonstrated significant levels of safety and enhanced drug therapy outcomes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oral route is the most frequently used method of drug intake in humans. Oral administration of drugs to laboratory animals such as mice typically is achieved through gavage, in which a feeding needle is introduced into the esophagus and the drug is delivered directly into the stomach. This method requires technical skill, is stressful for animals, and introduces risk of injury, pain and morbidity. Here we investigated another method of drug administration. The benzimidazole derivative albendazole was emulsified in commercially available honey and administered to mice by voluntary feeding or gavage. Mice that received albendazole by either gavage or honey ingestion had virtually identical levels of serum albendazole sulfoxide, indicating that uptake and metabolism of albendazole was similar for both administration techniques. In addition, dosing mice with the albendazole-honey mixture for 8 wk had antiparasitic activity comparable to earlier studies using gavage for drug administration. Compared with gavage, voluntary ingestion of a drug in honey is more rapid, less stressful to the animal, and less technically demanding for the administrator. Because of its low cost and ready availability, honey presents a viable vehicle for drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review article covers the synthetic strategies, structural aspects, and host-guest properties of ruthenium metalla-assemblies, with a special focus on their use as drug delivery vectors. The two-dimensional metalla-rectangles show interesting host-guest possibilities but seem less appropriate for being used as drug carriers. On the other hand, metalla-prisms allow encapsulation and possible targeted release of bioactive molecules and consequently show some potential as drug delivery vectors. The reactivity of these metalla-prisms can be fine-tuned to allow a fine control of the guest’s release. The larger metalla-cubes can be used to stabilize the formation of G-quadruplex DNA and can be used to encapsulate and release photoactive molecules such as porphins. These metalla-assemblies demonstrate great prospective in photodynamic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundThe present preliminary study describes concentration time courses of the NSAID carprofen in the plasma and synovial fluid in a microfrature sheep model after transcutaneous treatments with a novel application device (Vetdrop®). To treat circumscribed inflammatory processes a transcutaneous application device could potentially be beneficial. After transcutaneous application normally lower systemic concentrations are measured which may reduce the incidence of side effects, whereas efficacy is still maintained.In this study carprofen was used based on its capacity to provide analgesia after orthopaedic procedures in sheep and it is considered that it may have a positive influence on the healing of cartilage in low concentrations.ResultsIn all transcutaneously treated animals, carprofen plasma concentrations exceeded those of synovial fluid, although plasma levels remained significantly reduced (300-fold) as compared to carprofen administered intravenously. Furthermore, in contrast to the intravenously treated animals, a modest accumulation of carprofen in plasma and synovial fluid was observed in the transcutaneously treated animals over the 6-week treatment period.ConclusionsThe transcutaneously administered carprofen using the Vetdrop® device penetrated the skin and both, plasma- and synovial concentrations could be measured repeatedly over time. This novel device may be considered a valuable transcutaneous drug delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES This study sought to describe the frequency and clinical impact of acute scaffold disruption and late strut discontinuity of the second-generation Absorb bioresorbable polymeric vascular scaffolds (Absorb BVS, Abbott Vascular, Santa Clara, California) in the ABSORB (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions) cohort B study by optical coherence tomography (OCT) post-procedure and at 6, 12, 24, and 36 months. BACKGROUND Fully bioresorbable scaffolds are a novel approach to treatment for coronary narrowing that provides transient vessel support with drug delivery capability without the long-term limitations of metallic drug-eluting stents. However, a potential drawback of the bioresorbable scaffold is the potential for disruption of the strut network when overexpanded. Conversely, the structural discontinuity of the polymeric struts at a late stage is a biologically programmed fate of the scaffold during the course of bioresorption. METHODS The ABSORB cohort B trial is a multicenter single-arm trial assessing the safety and performance of the Absorb BVS in the treatment of 101 patients with de novo native coronary artery lesions. The current analysis included 51 patients with 143 OCT pullbacks who underwent OCT at baseline and follow-up. The presence of acute disruption or late discontinuities was diagnosed by the presence on OCT of stacked, overhung struts or isolated intraluminal struts disconnected from the expected circularity of the device. RESULTS Of 51 patients with OCT imaging post-procedure, acute scaffold disruption was observed in 2 patients (3.9%), which could be related to overexpansion of the scaffold at the time of implantation. One patient had a target lesion revascularization that was presumably related to the disruption. Of 49 patients without acute disruption, late discontinuities were observed in 21 patients. There were no major adverse cardiac events associated with this finding except for 1 patient who had a non-ischemia-driven target lesion revascularization. CONCLUSIONS Acute scaffold disruption is a rare iatrogenic phenomenon that has been anecdotally associated with anginal symptoms, whereas late strut discontinuity is observed in approximately 40% of patients and could be viewed as a serendipitous OCT finding of a normal bioresorption process without clinical implications. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by 1H NMR spectroscopy. xCE-PVP complex formation was confirmed by 1H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). 1H1H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV–vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Intravenous anaesthetic drugs are the primary means for producing general anaesthesia in equine practice. The ideal drug for intravenous anaesthesia has high reliability and pharmacokinetic properties indicating short elimination and lack of accumulation when administered for prolonged periods. Induction of general anaesthesia with racemic ketamine preceded by profound sedation has already an established place in the equine field anaesthesia. Due to potential advantages over racemic ketamine, S-ketamine has been employed in horses to induce general anaesthesia, but its optimal dose remains under investigation. The objective of this study was to evaluate whether 2.5 mg/kg S-ketamine could be used as a single intravenous bolus to provide short-term surgical anaesthesia in colts undergoing surgical castration, and to report its pharmacokinetic profile. RESULTS After premedication with romifidine and L-methadone, the combination of S-ketamine and diazepam allowed reaching surgical anaesthesia in the 28 colts. Induction of anaesthesia as well as recovery were good to excellent in the majority (n = 22 and 24, respectively) of the colts. Seven horses required additional administration of S-ketamine to prolong the duration of surgical anaesthesia. Redosing did not compromise recovery quality. Plasma concentration of S-ketamine decreased rapidly after administration, following a two-compartmental model, leading to the hypothesis of a consistent unchanged elimination of the parent compound into the urine beside its conversion to S-norketamine. The observed plasma concentrations of S-ketamine at the time of first movement were various and did not support the definition of a clear cut-off value to predict the termination of the drug effect. CONCLUSIONS The administration of 2.5 mg/kg IV S-ketamine after adequate premedication provided good quality of induction and recovery and a duration of action similar to what has been reported for racemic ketamine at the dose of 2.2 mg/kg. Until further investigations will be provided, close monitoring to adapt drug delivery is mandatory, particularly once the first 10 minutes after injection are elapsed. Taking into account rapid elimination of S-ketamine, significant inter-individual variability and rapid loss of effect over a narrow range of concentrations a sudden return of consciousness has to be foreseen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. MATERIALS AND METHODS: Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. RESULTS: Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). DISCUSSION: In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death is characterized by tightly controlled temporal and spatial intracellular Ca2+ responses that regulate the release of key proapoptotic proteins from mitochondria to the cytosol. Since apoptotic cells retain their ability to exclude membrane impermeable dyes, it is possible that the cells evoke repair mechanisms that, similar to those in normal cells, patch any damaged areas of the plasma membrane that preclude dye permeation. One critical distinction between plasma membrane repair in normal and apoptotic cells is the preservation of membrane lipid asymmetry. In normal cells, phosphatidylserine (PS) retains its normal asymmetric distribution in the inner membrane leaflet. In apoptotic cells, PS redistributes to the outer membrane leaflet by a Ca2+ dependent mechanism where it serves as a recognition ligand for phagocytes(1). In this study Ca 2+-specific fluorescent probes were employed to investigate the source of Ca2+ required for PS externalization. Experiments employing Rhod2-AM, calcium green 1, fura2-AM and the aqueous space marker FITC-dextran, demonstrated that exogenous Ca2+ imported with endocytotic vesicles into the cell was released into the cytosol in an apoptosis dependent manner. Labeling of the luminal side of the endocytotic vesicles with FITC-annexin 5, revealed that membrane lipid asymmetry was disrupted upon endosome formation. Specific labeling of the lysosomal luminal surface with the non-exchangeable membrane lipid probe, N-rhodamine-labeled-phosphatidylethanolamine (N-Rho-PE) and the lysosomal specific probe, lysotracker green, facilitated real-time monitoring of plasma membrane-to-endosome-to-lysosome transitions. Enforced elevation of cytosolic [Ca2+] with ionophore resulted in the redistribution of N-Rho-PE and PS from the inner membrane leaflet to the PM outer membrane leaflet. Identical results were obtained during apoptosis, however, the redistribution of both N-RhoPE and PS was dependent on the release of intra-lysosomal Ca2+ to the cytosol. Additional experiments suggested that lipid redistribution was dependent on the activity of lysosomal phospholipase A2 activity since lipid trafficking was abolished in the presence of chloroquine and lipase inhibitors. These data indicate that endosomal/lysosomal Ca2+ and the fusion of hybrid organelles to the plasma membrane regulates the externalization of PS during apoptosis. ^