923 resultados para mathematical equation correction approach


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical models of the knee joint are important tools which have both theoretical and practical applications. They are used by researchers to fully understand the stabilizing role of the components of the joint, by engineers as an aid for prosthetic design, by surgeons during the planning of an operation or during the operation itself, and by orthopedists for diagnosis and rehabilitation purposes. The principal aims of knee models are to reproduce the restraining function of each structure of the joint and to replicate the relative motion of the bones which constitute the joint itself. It is clear that the first point is functional to the second one. However, the standard procedures for the dynamic modelling of the knee tend to be more focused on the second aspect: the motion of the joint is correctly replicated, but the stabilizing role of the articular components is somehow lost. A first contribution of this dissertation is the definition of a novel approach — called sequential approach — for the dynamic modelling of the knee. The procedure makes it possible to develop more and more sophisticated models of the joint by a succession of steps, starting from a first simple model of its passive motion. The fundamental characteristic of the proposed procedure is that the results obtained at each step do not worsen those already obtained at previous steps, thus preserving the restraining function of the knee structures. The models which stem from the first two steps of the sequential approach are then presented. The result of the first step is a model of the passive motion of the knee, comprehensive of the patello-femoral joint. Kinematical and anatomical considerations lead to define a one degree of freedom rigid link mechanism, whose members represent determinate components of the joint. The result of the second step is a stiffness model of the knee. This model is obtained from the first one, by following the rules of the proposed procedure. Both models have been identified from experimental data by means of an optimization procedure. The simulated motions of the models then have been compared to the experimental ones. Both models accurately reproduce the motion of the joint under the corresponding loading conditions. Moreover, the sequential approach makes sure the results obtained at the first step are not worsened at the second step: the stiffness model can also reproduce the passive motion of the knee with the same accuracy than the previous simpler model. The procedure proved to be successful and thus promising for the definition of more complex models which could also involve the effect of muscular forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality control of medical radiological systems is of fundamental importance, and requires efficient methods for accurately determine the X-ray source spectrum. Straightforward measurements of X-ray spectra in standard operating require the limitation of the high photon flux, and therefore the measure has to be performed in a laboratory. However, the optimal quality control requires frequent in situ measurements which can be only performed using a portable system. To reduce the photon flux by 3 magnitude orders an indirect technique based on the scattering of the X-ray source beam by a solid target is used. The measured spectrum presents a lack of information because of transport and detection effects. The solution is then unfolded by solving the matrix equation that represents formally the scattering problem. However, the algebraic system is ill-conditioned and, therefore, it is not possible to obtain a satisfactory solution. Special strategies are necessary to circumvent the ill-conditioning. Numerous attempts have been done to solve this problem by using purely mathematical methods. In this thesis, a more physical point of view is adopted. The proposed method uses both the forward and the adjoint solutions of the Boltzmann transport equation to generate a better conditioned linear algebraic system. The procedure has been tested first on numerical experiments, giving excellent results. Then, the method has been verified with experimental measurements performed at the Operational Unit of Health Physics of the University of Bologna. The reconstructed spectra have been compared with the ones obtained with straightforward measurements, showing very good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of competitiveness, for a long time considered as strictly connected to economic and financial performances, evolved, above all in recent years, toward new, wider interpretations disclosing its multidimensional nature. The shift to a multidimensional view of the phenomenon has excited an intense debate involving theoretical reflections on the features characterizing it, as well as methodological considerations on its assessment and measurement. The present research has a twofold objective: going in depth with the study of tangible and intangible aspect characterizing multidimensional competitive phenomena by assuming a micro-level point of view, and measuring competitiveness through a model-based approach. Specifically, we propose a non-parametric approach to Structural Equation Models techniques for the computation of multidimensional composite measures. Structural Equation Models tools will be used for the development of the empirical application on the italian case: a model based micro-level competitiveness indicator for the measurement of the phenomenon on a large sample of Italian small and medium enterprises will be constructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that many realistic mathematical models of biological systems, such as cell growth, cellular development and differentiation, gene expression, gene regulatory networks, enzyme cascades, synaptic plasticity, aging and population growth need to include stochasticity. These systems are not isolated, but rather subject to intrinsic and extrinsic fluctuations, which leads to a quasi equilibrium state (homeostasis). The natural framework is provided by Markov processes and the Master equation (ME) describes the temporal evolution of the probability of each state, specified by the number of units of each species. The ME is a relevant tool for modeling realistic biological systems and allow also to explore the behavior of open systems. These systems may exhibit not only the classical thermodynamic equilibrium states but also the nonequilibrium steady states (NESS). This thesis deals with biological problems that can be treat with the Master equation and also with its thermodynamic consequences. It is organized into six chapters with four new scientific works, which are grouped in two parts: (1) Biological applications of the Master equation: deals with the stochastic properties of a toggle switch, involving a protein compound and a miRNA cluster, known to control the eukaryotic cell cycle and possibly involved in oncogenesis and with the propose of a one parameter family of master equations for the evolution of a population having the logistic equation as mean field limit. (2) Nonequilibrium thermodynamics in terms of the Master equation: where we study the dynamical role of chemical fluxes that characterize the NESS of a chemical network and we propose a one parameter parametrization of BCM learning, that was originally proposed to describe plasticity processes, to study the differences between systems in DB and NESS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the theory of Relativity and its diffusion in Italy in the first decades of the XX century. Not many scientists belonging to Italian universities were active in understanding Relativity, but two of them, Max Abraham and Tullio Levi-Civita left a deep mark. Max Abraham engaged a substantial debate against Einstein between 1912 and 1914 about electromagnetic and gravitation aspects of the theories. Levi-Civita played a fundamental role in giving Einstein the correct mathematical instruments for the General Relativity formulation since 1915. This work, which doesn't have the aim of a mere historical chronicle of the events, wants to highlight two particular perspectives: on one hand, the importance of Abraham-Einstein debate in order to clarify the basis of Special Relativity, to observe the rigorous logical structure resulting from a fragmentary reasoning sequence and to understand Einstein's thinking; on the other hand, the originality of Levi-Civita's approach, quite different from the Einstein's one, characterized by the introduction of a method typical of General Relativity even to Special Relativity and the attempt to hide the two Einstein Special Relativity postulates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis, included within the THESEUS project, is the development of a mathematical model 2DV two-phase, based on the existing code IH-2VOF developed by the University of Cantabria, able to represent together the overtopping phenomenon and the sediment transport. Several numerical simulations were carried out in order to analyze the flow characteristics on a dike crest. The results show that the seaward/landward slope does not affect the evolution of the flow depth and velocity over the dike crest whereas the most important parameter is the relative submergence. Wave heights decrease and flow velocities increase while waves travel over the crest. In particular, by increasing the submergence, the wave height decay and the increase of the velocity are less marked. Besides, an appropriate curve able to fit the variation of the wave height/velocity over the dike crest were found. Both for the wave height and for the wave velocity different fitting coefficients were determined on the basis of the submergence and of the significant wave height. An equation describing the trend of the dimensionless coefficient c_h for the wave height was derived. These conclusions could be taken into consideration for the design criteria and the upgrade of the structures. In the second part of the thesis, new equations for the representation of the sediment transport in the IH-2VOF model were introduced in order to represent beach erosion while waves run-up and overtop the sea banks during storms. The new model allows to calculate sediment fluxes in the water column together with the sediment concentration. Moreover it is possible to model the bed profile evolution. Different tests were performed under low-intensity regular waves with an homogeneous layer of sand on the bottom of a channel in order to analyze the erosion-deposition patterns and verify the model results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with numerical algorithms for fluid-structure interaction problems with application in blood flow modelling. It starts with a short introduction on the mathematical description of incompressible viscous flow with non-Newtonian viscosity and a moving linear viscoelastic structure. The mathematical model consists of the generalized Navier-Stokes equation used for the description of fluid flow and the generalized string model for structure movement. The arbitrary Lagrangian-Eulerian approach is used in order to take into account moving computational domain. A part of the thesis is devoted to the discussion on the non-Newtonian behaviour of shear-thinning fluids, which is in our case blood, and derivation of two non-Newtonian models frequently used in the blood flow modelling. Further we give a brief overview on recent fluid-structure interaction schemes with discussion about the difficulties arising in numerical modelling of blood flow. Our main contribution lies in numerical and experimental study of a new loosely-coupled partitioned scheme called the kinematic splitting fluid-structure interaction algorithm. We present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Here, we assume both, the nonlinearity in convective as well is diffusive term. We analyse the convergence of proposed numerical scheme for a simplified fluid model of the Oseen type. Moreover, we present series of experiments including numerical error analysis, comparison of hemodynamic parameters for the Newtonian and non-Newtonian fluids and comparison of several physiologically relevant computational geometries in terms of wall displacement and wall shear stress. Numerical analysis and extensive experimental study for several standard geometries confirm reliability and accuracy of the proposed kinematic splitting scheme in order to approximate fluid-structure interaction problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first chapter, I develop a panel no-cointegration test which extends Pesaran, Shin and Smith (2001)'s bounds test to the panel framework by considering the individual regressions in a Seemingly Unrelated Regression (SUR) system. This allows to take into account unobserved common factors that contemporaneously affect all the units of the panel and provides, at the same time, unit-specific test statistics. Moreover, the approach is particularly suited when the number of individuals of the panel is small relatively to the number of time series observations. I develop the algorithm to implement the test and I use Monte Carlo simulation to analyze the properties of the test. The small sample properties of the test are remarkable, compared to its single equation counterpart. I illustrate the use of the test through a test of Purchasing Power Parity in a panel of EU15 countries. In the second chapter of my PhD thesis, I verify the Expectation Hypothesis of the Term Structure in the repurchasing agreements (repo) market with a new testing approach. I consider an "inexact" formulation of the EHTS, which models a time-varying component in the risk premia and I treat the interest rates as a non-stationary cointegrated system. The effect of the heteroskedasticity is controlled by means of testing procedures (bootstrap and heteroskedasticity correction) which are robust to variance and covariance shifts over time. I fi#nd that the long-run implications of EHTS are verified. A rolling window analysis clarifies that the EHTS is only rejected in periods of turbulence of #financial markets. The third chapter introduces the Stata command "bootrank" which implements the bootstrap likelihood ratio rank test algorithm developed by Cavaliere et al. (2012). The command is illustrated through an empirical application on the term structure of interest rates in the US.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of this work concerns the study of the immigration phenomenon, with emphasis on the aspects related to the integration of an immigrant population in a hosting one. Aim of this work is to show the forecasting ability of a recent finding where the behavior of integration quantifiers was analyzed and investigated with a mathematical model of statistical physics origins (a generalization of the monomer dimer model). After providing a detailed literature review of the model, we show that not only such a model is able to identify the social mechanism that drives a particular integration process, but it also provides correct forecast. The research reported here proves that the proposed model of integration and its forecast framework are simple and effective tools to reduce uncertainties about how integration phenomena emerge and how they are likely to develop in response to increased migration levels in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Theorie der analytischen zweiten Ableitungen für die EOMIP-CCSD-Methode formuliert sowie die durchgeführte Implementierung im Quantenchemieprogramm CFOUR beschrieben. Diese Ableitungen sind von Bedeutung bei der Bestimmung statischer Polarisierbarkeiten und harmonischer Schwingungsfrequenzen und in dieser Arbeit wird die Genauigkeit des EOMIP-CCSD-Ansatzes bei der Berechnung dieser Eigenschaften für verschiedene radikalische Systeme untersucht. Des Weiteren können mit Hilfe der ersten und zweiten Ableitungen vibronische Kopplungsparameter berechnet werden, welche zur Simulation von Molekülspektren in Kombination mit dem Köppel-Domcke-Cederbaum (KDC)-Modell - in der Arbeit am Beispiel des Formyloxyl (HCO2)-Radikals demonstriert - benötigt werden.rnrnDer konzeptionell einfache EOMIP-CC-Ansatz wurde gewählt, da hier die Wellenfunktion eines Radikalsystems ausgehend von einem stabilen geschlossenschaligen Zustand durch die Entfernung eines Elektrons gebildet wird und somit die Problematik der Symmetriebrechung umgangen werden kann. Im Rahmen der Implementierung wurden neue Programmteile zur Lösung der erforderlichen Gleichungen für die gestörten EOMIP-CC-Amplituden und die gestörten Lagrange-Multiplikatoren zeta zum Quantenchemieprogramm CFOUR hinzugefügt. Die unter Verwendung des Programms bestimmten Eigenschaften werden hinsichtlich ihrer Leistungsfähigkeit im Vergleich zu etablierten Methoden wie z.B. CCSD(T) untersucht. Bei der Berechnung von Polarisierbarkeiten und harmonischen Schwingungsfrequenzen liefert die EOMIP-CCSD-Theorie meist gute Resultate, welche nur wenig von den CCSD(T)-Ergebnissen abweichen. Einzig bei der Betrachtung von Radikalen, für die die entsprechenden Anionen nicht stabil sind (z.B. NH2⁻ und CH3⁻), liefert der EOMIP-CCSD-Ansatz aufgrund methodischer Nachteile keine aussagekräftige Beschreibung. rnrnDie Ableitungen der EOMIP-CCSD-Energie lassen sich auch zur Simulation vibronischer Kopplungen innerhalb des KDC-Modells einsetzen.rnZur Kopplung verschiedener radikalischer Zustände in einem solchen Modellpotential spielen vor allem die Ableitungen von Übergangsmatrixelementen eine wichtige Rolle. Diese sogenannten Kopplungskonstanten können in der EOMIP-CC-Theorie besonders leicht definiert und berechnet werden. Bei der Betrachtung des Photoelektronenspektrums von HCO2⁻ werden zwei Alternativen untersucht: Die vertikale Bestimmung an der Gleichgewichtsgeometrie des HCO2⁻-Anions und die Ermittlung adiabatischer Kraftkonstanten an den Gleichgewichtsgeometrien des Radikals. Lediglich das adiabatische Modell liefert bei Beschränkung auf harmonische Kraftkonstanten eine qualitativ sinnvolle Beschreibung des Spektrums. Erweitert man beide Modelle um kubische und quartische Kraftkonstanten, so nähern sich diese einander an und ermöglichen eine vollständige Zuordnung des gemessenen Spektrums innerhalb der ersten 1500 cm⁻¹. Die adiabatische Darstellung erreicht dabei nahezu quantitative Genauigkeit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questa tesi viene presentato il modello di Keller-Segel per la chemiotassi, un sistema di tipo parabolico-ellittico che appare nella descrizione di molti fenomeni in ambito biologico e medico. Viene mostrata l'esistenza globale della soluzione debole del modello, per dati iniziali sufficientemente piccoli in dimensione N>2. La scelta di dati iniziali abbastanza grandi invece può causare il blow-up della soluzione e viene mostrato sotto quali condizioni questo si verifica. Infine il modello della chemiotassi è stato applicato per descrivere una fase della malattia di Alzheimer ed è stata effettuata un'analisi di stabilità del sistema.