976 resultados para manned and unmanned aircraft


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations obtained during an 8-month deployment of AMF2 in a boreal environment in Hyytiälä, Finland, and the 20-year comprehensive in-situ data from SMEAR-II station enable the characterization of biogenic aerosol, clouds and precipitation, and their interactions. During “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes, in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed systems comprised of autonomous self-interested entities require some sort of control mechanism to ensure the predictability of the interactions that drive them. This is certainly true in the aerospace domain, where manufacturers, suppliers and operators must coordinate their activities to maximise safety and profit, for example. To address this need, the notion of norms has been proposed which, when incorporated into formal electronic documents, allow for the specification and deployment of contract-driven systems. In this context, we describe the CONTRACT framework and architecture for exactly this purpose, and describe a concrete instantiation of this architecture as a prototype system applied to an aerospace aftercare scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the domain of aerospace aftermarkets, which often has long supply chains that feed into the maintenance of aircraft, contracts are used to establish agreements between aircraft operators and maintenance suppliers. However, violations at the bottom of the supply chain (part suppliers) can easily cascade to the top (aircraft operators), making it difficult to determine the source of the violation, and seek to address it. In this context, we have developed a global monitoring architecture that ensures the detection of norm violations and generates explanations for the origin of violations. In this paper, we describe the implementation and deployment of a global monitor in the aerospace domain of [8] and show how it generates explanations for violations within the maintenance supply chain. We show how these explanations can be used not only to detect violations at runtime, but also to uncover potential problems in contracts before their deployment, thus improving them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The asymmetric travelling salesman problem with replenishment arcs (RATSP), arising from work related to aircraft routing, is a generalisation of the well-known ATSP. In this paper, we introduce a polynomial size mixed-integer linear programming (MILP) formulation for the RATSP, and improve an existing exponential size ILP formulation of Zhu [The aircraft rotation problem, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 1994] by proposing two classes of stronger cuts. We present results that under certain conditions, these two classes of stronger cuts are facet-defining for the RATS polytope, and that ATSP facets can be lifted, to give RATSP facets. We implement our polyhedral findings and develop a Lagrangean relaxation (LR)-based branch-and-bound (BNB) algorithm for the RATSP, and compare this method with solving the polynomial size formulation using ILOG Cplex 9.0, using both randomly generated problems and aircraft routing problems. Finally we compare our methods with the existing method of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408–427]. It turns out that both of our methods are much faster than that of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408–427], and that the LR-based BNB method is more efficient for problems that resemble the aircraft rotation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focuses on the intent of the Chinese government to acquire an aircraft carrier force as part of its ambition to achieve high seas naval capability. Possibility of buying a light aircraft carrier from a European builder; Concerns over the possibility to operate aircraft carrier battle groups; Protection of sovereignty and maritime resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer modeling and simulation provide a foundation upon which industrial processes and systems can be transformed and innovation dramatically accelerated. Computer modeling and simulation is also an indispensable tool of the information age, used extensively in design, analysis, operations, decision-making, optimization, and education and training. Manufacturing, production and design relies upon simulation to develop efficient production systems and factories that produce quality products. Simulation in industry has yet to meet its full potential. The development of models is very time consuming, particularly for geometries of complex engineering systems such as manufacturing plants, automobiles, aircraft and ships. Computer simulation allows scientists and engineers to understand and predict three-dimensional and time-dependent phenomena in science and engineering discipline. This talk will focus on challenges associated with modeling and simulation in the manufacturing sector and through a number of case studies highlight the benefits gained through the use of such technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced polymeric materials and their respective composites are fast becoming one of the world's most frequently used engineering materials. They find application in the manufacture of e.g. boat hulls, high performance motor vehicles, aircraft components and sports goods. Their high specific strength and specific stiffness give them the edge in applications where weight savings are critical, but their long-term durability is often questioned. These materials are susceptible to environmental conditions such as temperature and humidity. There is also a lack of relevant data, due to the long time-scales required for testing. In this study, the Raman technique has been used to monitor the degradation of two composite systems, namely: a rubber toughened vinylester material used in the marine industry and a high temperature bismaleimide/carbon fibre aerospace composite. Preliminary Raman studies show that the toughening rubber particles dispersed in the cured vinylester resin are leached out during hygrothermal ageing. The weight gain during ageing suggests that this leaching process occurs concurrently with the absorption of water molecules. An increase in the degree of cross-linking is observed when bismaleimide/carbon fibre composite is aged at high temperature. This cross- linking tendency decreases with increasing depth within the carbon fibre bundle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mission and path planning for multiple robots in dynamic environments is required when multiple mobile robots or unmanned vehicles are used for geographically distributed tasks. Assigning tasks and paths for robots for cooperatively accomplishing a mission of reaching to number of target points are addressed in this paper. The methodology that is proposed is based on using an adjustable force field which is suitable for dynamic environment. From the force field analysis, the decisions to assign tasks for each robot are then made. The force field is also used to plan a collision free path for each robot. Adjustable weights for the force field model are proposed to satisfy the constraints of the motion. In this research, the constraints are the cooperation of the robots, the precedence between the targets and between robots, and the discrimination between different obstacles. Two simulations for mission and path planning in 2D and 3D dynamic spaces with multiple robots are presented based on the proposed adjustable force filed. The result of the mission and path planning for three robots cooperatively doing eight target points are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of airport and air cargo operations is commonly performed in isolation, sharing only simple information such as flight schedules. Systems theory and Systems methodology can enhance such analysis by considering all aspects of air operations. It provides the decision-maker with an improved understanding of the implication of policy decisions, resource allocations and infrastructure investment strategies, through the capture of emergent behaviours and interdependencies. For example, the term airport operations, initially reminds us of the thought of passengers being transported by aircraft. Deeper thinking would identify activities that affect passenger operations, such as baggage handling systems, aircraft maintenance, and passenger security. In reality, airport operations consist of numerous aspects, including; concourses, runways, airlines, fuel depots, cargo terminal operators, retail, parking, cleaning, catering and many interacting people including travellers, service providers and visitors. For the airport to function effectively, these numerous systems must work together. This talk will focus on new tools and methodologies that are required for model development and analysis. It will then focus on modelling, simulation and analysis of the airport operations, providing greater understanding of airport operation with an emphasis towards security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26-820 ng g(-1) dry weight (dw)) and PFAS levels (e.g., PFOS 3.8-2400 ng g(-1) (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71-400 ng L(-1)) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing use of commercial off-the-shelf Mini-Micro Unmanned Aerial Vehicle (MAV) systems with enhanced intelligence methodologies can potentially be a threat, if this technology falls into the wrong hands. In this study, we investigate the level of threat imposed on critical infrastructure using different MAV swarm artificial intelligence traits and coordination methodologies. The critical infrastructure in consideration is a moving commercial land vehicle that may be transporting for example an important civil servant or politician. Non-dimensional fitness functions used for measuring MAV mission effectiveness have been established for the case studies considered in this paper. The findings indicated that increased in intelligent and coordination level elevate teams' efficiency, therefore poses a higher degree of threat to targeted land vehicle. Observations from the study have suggested that memory-based cooperative technique provides a consistent efficiency compared to other methods for the mission objectives considered in this paper. © 2014 The authors and IOS Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on studying aluminum micro-truss sandwich structures. These structures have useful properties for a wide range of applications, such as aircraft manufacturing. This thesis suggests the application of a new approach that is using elevated temperature to reduce the undesirable defections in these truss structures during forming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis focused on development of an auto-pilot system for UAV’s and small fixed wing aircraft for use in hazardous flight conditions, such as severe weather. This led to development of a mathematical algorithm that unbinds the flight systems from coupling effects which can adaptively changed to the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Quadrotor is an Unmanned Aerial Vehicle (UAV) equipped with four rotors distributed on a simple mechanical "X"form structure. The aim of this work is to build and stabilize a Quadrotor aircraft in the roll, pitch and yaw angles at a certain altitude. The stabilization control approach is based on a transformation in the input variables in order to perform a decoupled control. The proposed strategy is based on breaking the control problem into two hierarchical levels: A lower level, object of this work, maintains the desired altitude an angles of the vehicle while the higher level establishes appropriate references to the lower level, performing the desired movements. A hardware and software architecture was specially developed and implemented for an experimental prototype used to test and validate the proposed control approach