931 resultados para low pressure MOCVD
Resumo:
Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally inactive. Importantly, even in the absence of an external heat source, significant activity was obtained. This low temperature activity provides the basis for applying nonthermal plasmas to activate emission control catalysts during cold start conditions, which remains an important issue for mobile and stationary applications.
Resumo:
Pressure-sensitive adhesives (PSAs) have applications in the fields of packaging, joining, wound care, and personal care. Depending on the application of the PSA, different performance tests are carried out when new products are developed or the quality of the existing products is checked. Tack is the property of an adhesive that enables it to form instant bond on the surface under light pressure. The tack of a PSA strongly depends on the way the bond is created. Parameters such as the bonded area, contact time and the nature of tack materials all affect the tack force measured. In the development of any PSA, it is desirable to correlate the performance related properties such as tack and peel strength to the rheological behaviour. Finding these correlations would make it possible to evaluate the performance of a PSA using its rheological characteristics. In this investigation we have studied the influence of rheological behaviour of three different PSAs on their tackiness. The three different PSAs used in this study are a low molecular weight rosin ester, high molecular weight rosin ester, and dicyclopentadiene. Various rheological properties such as viscosity, phase angle, and elastic and viscous moduli are measured versus the frequency and temperature. Also the tack properties at various removal speeds and temperatures are evaluated. Analysis of the results indicates different performances of the three PSAs which could be related to their rheological properties, especially the phase angle, at different frequencies and temperatures. The PSA with high molecular weight rosin ester is more sensitive to temperature changes and showed drastic changes in tackiness from high temperature to low temperature. On the other hand, rosin ester with low molecular weight is less sensitive to temperature changes. © 2010 VSP.
Resumo:
Tomato is the second most widely grown vegetable crop across the globe and it is one of widely cultivated crops in Sri Lanka. However, tomato industry in Sri Lanka facing a problem of high postharvest loss (54%) during the glut coupled with heavy revenue loss to the country by importing processed products. The aim of this work is to develop shelf-stable tomato product with maximum quality characteristics using high pressure processing (HPP). Tomato juice with altered and unaltered pH was processed using HPP at 600 MPa for 1 min after blanching (90 oC/2 min). As a control tomato juice was subjected to thermal processing (TP) at 95 oC /20 min. Processed samples were stored under 20oC and 28oC for 9 month period and analysed for total viable count (TVC) and instrumental colour (L, a, b) value at 0,1,2 3, and 4 week and 2, 3, 6 and 9 months interval. The raw juice sample had initial 6.69 log10 CFU/ml and both TP and HPP caused a more than 4.69 log10 reduction in the TVC of juice and microbial numbers remained low throughout the storage period even at 3 months after storage irrespective of the storage temperature. Both TP and HPP treated samples had the redness ⤘a value’ of 14.44-17.15 just after processing and showed non-significant reduction with storage in all the treatments after 3 months. The storage study results and discussed in relation to the end goal and compared with the literature.
Resumo:
The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.
Resumo:
With a new test facility, we have investigated fretting fatigue properties of Ti-1023 titanium alloy at different contact pressure. Both fatigue fracture and fretting scar were analyzed by scanning electron microscopy (SEM). Moreover, the depth of crack initiation area in fatigue fracture has been analyzed quantitatively, to investigate the relationship between the depth of crack initiation area and the fretting fatigue strength. The changing trends of the depth of crack initiation area and fretting fatigue strength with the increase of contact pressure show obvious opposite correlations. The depth of crack initiation area increases rapidly with the increase of contact pressure at low contact pressure (smaller than 10 MPa), and the fretting fatigue strength drops rapidly. At the contact pressure of 10–45 MPa, both the depth of crack initiation area and the fretting fatigue strength do not vary significantly. Contact pressure influences fatigue strength through influencing the initiation of fatigue crack. The main damage patterns are fatigue flake and plow.
Resumo:
This paper deals with identification of dynamics in suction control of airfoils for low Reynolds number regimes (8 x 10^4 - 5 x 10^5). In particular, the dynamics of interest is the map that relates suction pressure and surface pressure. Identification of such dynamics is of use to a variety of active control applications including suction control in small/medium wind turbines which operate in these Reynolds number regimes. Prior research has largely focused on higher Reynolds number regimes, creating a need for such a study. Towards identifying the said dynamic relations, experiments were conducted on NACA0012 airfoil in a wind tunnel. The dynamic relation between suction and surface pressure was identified as an overdamped second order system.
Resumo:
This study explored the effect of HPP (400 MPa/1 min) and a Weissella viridescens protective culture, alone or in conjunction, against Listeria monocytogenes in ready-to-eat (RTE) salads with different pH values (4.32 and 5.59) during storage at 4 and 12 °C. HPP was able to reduce the counts of the pathogen after treatment achieving approximately a 4.0 and 1.5 log CFU/g reduction in the low and higher pH RTE salad, respectively. However, L. monocytogenes was able to recover and grow during subsequent storage. W. viridescens grew in both RTE salads at both storage temperatures, with HPP resulting in only a small immediate reduction of W. viridescens ranging from 0.50 to 1.2 log CFU/g depending on the pH of the RTE salad. For the lower pH RTE salad, the protective culture was able to gradually reduce the L. monocytogenes counts during storage whereas for the higher pH RTE salad in some cases it delayed growth significantly or exerted a bacteriostatic effect. exerted a bacteriostatic effect. The results revealed that the increased storage temperature led to an increase in the inactivation/inhibition of L. monocytogenes in the presence of W. viridescens. The combination of HPP and W. viridescens is a promising strategy to control L. monocytogenes and can increase safety even when a break in the chill chain occurs.
Resumo:
AIM: To investigate the safety and potential savings of decreasing medication use in low-risk patients with ocular hypertension (OH).
METHODS: Patients with OH receiving pressure-lowering medication identified by medical record review at a university hospital underwent examination by a glaucoma specialist with assessment of visual field (VF), vertical cup-to-disc ratio (vCDR), central corneal thickness and intraocular pressure (IOP). Subjects with estimated 5-year risk of glaucoma conversion <15% were asked to discontinue ≥1 medication, IOP was remeasured 1 month later and risk was re-evaluated at 1 year.
RESULTS: Among 212 eyes of 126 patients, 44 (20.8%) had 5-year risk >15% and 14 (6.6%) had unreliable baseline VF. At 1 month, 15 patients (29 eyes, 13.7%) defaulted follow-up or refused to discontinue medication and 11 eyes (5.2%) had risk >15%. The remaining 69 patients (107 eyes, 50.7%) successfully discontinued 141 medications and completed 1-year follow-up. Mean IOP (20.5±2.65 mm Hg vs 20.3±3.40, p=0.397) did not change, though mean VF pattern SD (1.58±0.41 dB vs 1.75±0.56 dB, p=0.001) and glaucoma conversion risk (7.31±3.74% vs 8.76±6.28%, p=0.001) increased at 1 year. Mean defect decreased (-1.42±1.60 vs -1.07±1.52, p=0.022). One eye (0.47%) developed a repeatable VF defect and 13 eyes (6.1%) had 5-year risk >15% at 1 year. The total 1-year cost of medications saved was US$4596.
CONCLUSIONS: Nearly half (43.9%) of low-risk OH eyes in this setting could safely reduce medications over 1 year, realising substantial savings.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Resumo:
PURPOSE: To describe the distribution of central corneal thickness (CCT), intraocular pressure (IOP), and their determinants and association with glaucoma in Chinese adults.DESIGN: Population-based cross-sectional study.METHODS: Chinese adults aged 50 years and older were identified using cluster random sampling in Liwan District, Guangzhou. CCT (both optical [OCCT] and ultrasound [UCCT]), intraocular pressure (by Tonopen, IOP), refractive error (by autorefractor, RE), radius of corneal curvature (RCC), axial length (AL), and body mass index (BMI) were measured, and history of hypertension and diabetes (DM) was collected by questionnaire. Right eye data were analyzed.RESULTS: The mean values of OCCT, UCCT, and IOP were 512 ± 29.0 μm, 542 ± 31.4 μm, and 15.2 ± 3.1 mm Hg, respectively. In multiple regression models, CCT declined with age (P < .001) and increased with greater RCC (P < .001) and DM (P = .037). IOP was positively associated with greater CCT (P < .001), BMI (P < .001), and hypertension (P < .001). All 25 persons with open-angle glaucoma had IOP <21 mm Hg. CCT did not differ significantly between persons with and without open- or closed-angle glaucoma. Among 65 persons with ocular hypertension (IOP >97.5th percentile), CCT (555 ± 29 μm) was significantly (P = .01) higher than for normal persons.CONCLUSIONS: The distributions of CCT and IOP in this study are similar to that for other Chinese populations, though IOP was lower than for European populations, possibly due to lower BMI and blood pressure. Glaucoma with IOP <21 mm Hg is common in this population. We found no association between glaucoma and CCT, though power (0.3) for this analysis was low.
Resumo:
Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.
Resumo:
Objective: The Finometer (FMS, Finapres Measurement Systems, Amsterdam) records the beat-to-beat finger pulse contour and has been recommended for research studies assessing shortterm changes of blood pressure and its variability. Variability measured in the frequency domain using spectral analysis requires that the impact of breathing be restricted to high frequency spectra (> 0.15 Hz) so data from participants needs to be excluded when the breathing impact occurs in the low frequency spectra (0.04 - 0.15 Hz). This study tested whether breathing frequency can be estimated from standard Finometer recordings using either stroke volume oscillation frequency or spectral stroke volume variability maximum scores. Methods: 22 healthy volunteers were tested for 270s in the supine and upright positions. Finometer recorded the finger pulse contour and a respiratory transducer recorded breathing. Stoke volume oscillation frequency was calculated manually while the stroke volume spectral maximums were obtained using the software Cardiovascular Parameter Analysis (Nevrokard Kiauta, Izola, Slovenia). These estimates were compared to the breathing frequency using the Bland-Altman procedures. Results: Stroke volume oscillation frequency estimated breathing frequency to <±10% 95% levels of agreement in both supine (-7.7 to 7.0%) and upright (-6.7 to 5.4%) postures. Stroke volume variability maximum scores did not accurately estimate breathing frequency. Conclusions: Breathing frequency can be accurately derived from standard Finometer recordings using stroke volume oscillations for healthy individuals in both supine and upright postures. The Finometer can function as a standalone instrument in blood pressure variability studies and does not require support equipment to determine breathing frequency.
Resumo:
An experimental study to evaluate the power dissipation of gears was performed. Three low-loss gear models were manufactured using standard 20° pressure angle tools. Austempered ductile iron (ADI) and 20MnCr5 carburized steel gears were tested in an FZG gear test machine using mineral, ester and polyalphaolephine (PAO)-based oils. The results compare power dissipation, the influence of different tooth flank geometries, materials and lubricants. This work concludes that conventional power-transmission gears can be replaced by these improved and more efficient low–loss models, which can be produced using common tools and that steel gears can be successfully replaced by austempered ductile iron gears.
Resumo:
Blood pressure follows a circadian rhythm with a physiologic 10% to 20% decrease during the night. There is now increasing evidence that a blunted decrease or an increase in nighttime blood pressure is associated with a greater prevalence of target organ damage and a faster disease progression in patients with chronic kidney diseases. Several factors contribute to the changes in nighttime blood pressure including changes in hormonal profiles such as variations in the activity of the renin-angiotensin and the sympathetic nervous systems. Recently, it was hypothesized that the absence of a blood pressure decrease during the nighttime (nondipping) is in fact a pressure-natriuresis mechanism enabling subjects with an impaired capacity to excrete sodium to remain in sodium balance. In this article, we review the clinical and epidemiologic data that tend to support this hypothesis. Moreover, we show that most, if not all, clinical conditions associated with an impaired dipping profile are diseases associated either with a low glomerular filtration rate and/or an impaired ability to excrete sodium. These observations would suggest that renal function, and most importantly the ability to eliminate sodium during the day, is indeed a key determinant of the circadian rhythm of blood pressure.
Resumo:
BACKGROUND AND OBJECTIVES: The SBP values to be achieved by antihypertensive therapy in order to maximize reduction of cardiovascular outcomes are unknown; neither is it clear whether in patients with a previous cardiovascular event, the optimal values are lower than in the low-to-moderate risk hypertensive patients, or a more cautious blood pressure (BP) reduction should be obtained. Because of the uncertainty whether 'the lower the better' or the 'J-curve' hypothesis is correct, the European Society of Hypertension and the Chinese Hypertension League have promoted a randomized trial comparing antihypertensive treatment strategies aiming at three different SBP targets in hypertensive patients with a recent stroke or transient ischaemic attack. As the optimal level of low-density lipoprotein cholesterol (LDL-C) level is also unknown in these patients, LDL-C-lowering has been included in the design. PROTOCOL DESIGN: The European Society of Hypertension-Chinese Hypertension League Stroke in Hypertension Optimal Treatment trial is a prospective multinational, randomized trial with a 3 × 2 factorial design comparing: three different SBP targets (1, <145-135; 2, <135-125; 3, <125 mmHg); two different LDL-C targets (target A, 2.8-1.8; target B, <1.8 mmol/l). The trial is to be conducted on 7500 patients aged at least 65 years (2500 in Europe, 5000 in China) with hypertension and a stroke or transient ischaemic attack 1-6 months before randomization. Antihypertensive and statin treatments will be initiated or modified using suitable registered agents chosen by the investigators, in order to maintain patients within the randomized SBP and LDL-C windows. All patients will be followed up every 3 months for BP and every 6 months for LDL-C. Ambulatory BP will be measured yearly. OUTCOMES: Primary outcome is time to stroke (fatal and non-fatal). Important secondary outcomes are: time to first major cardiovascular event; cognitive decline (Montreal Cognitive Assessment) and dementia. All major outcomes will be adjudicated by committees blind to randomized allocation. A Data and Safety Monitoring Board has open access to data and can recommend trial interruption for safety. SAMPLE SIZE CALCULATION: It has been calculated that 925 patients would reach the primary outcome after a mean 4-year follow-up, and this should provide at least 80% power to detect a 25% stroke difference between SBP targets and a 20% difference between LDL-C targets.
Resumo:
PURPOSE: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study. METHODS: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps. RESULTS: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time. CONCLUSION: Increases in VO2max and performance enhancement were similar between NH and HH conditions.