971 resultados para layered medium theory
Resumo:
A new series of layered perovskite oxides, AILaNb2O7 (A = Li, Na, K, Rb, Cs, NH4) constituting n = 2 members of the family A A′n−1BnO3n+1, has been prepared. Their structure consists of double perovskite slabs interleaved by A atoms. Hydrated HLaNb2O7 is formed by topotactic proton exchange of the A atoms in ALaNb2O7 (A = K, Rb, Cs). The hydrate readily loses water to give anhydrous HLaNb2O7 which is isostructural with RbLaNb2O7. HLaNb2O7 exhibits Bronsted acidity forming intercalation compounds with bases such as n-octylamine and pyridine.
Resumo:
A perturbative scaling theory for calculating static thermodynamic properties of arbitrary local impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The basic features are developments of the ideas of Anderson and Wilson, but the precise formulation is new and is capable of taking into account band-edge effects which cannot be neglected in certain problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are derived up to third order. The strategy of using such perturbative scaling equations is delineated and the renormalization-group aspects are discussed. The method is illustrated by applying it to the single-impurity Kondo problem whose static properties are well understood.
Resumo:
Haptices and haptemes: A case study of developmental process in touch-based communication of acquired deafblind people This research is the first systematic, longitudinal process and development description of communication using touch and body with an acquired deafblind person. The research consists of observational and analysed written and video materials mainly from two informants´ experiences during period of 14 years. The research describes the adaptation of Social-Haptic methods between a couple, and other informants´ experiences, which have been collated from biographies and through giving national and international courses. When the hearing and sight deteriorates due to having an acquired deafblind condition, communication consists of multi-systematic and adaptive methods. A person`s expressive language, spoken or Sign Language, usually remains unchanged, but the methods of receiving information could change many times during a person s lifetime. Haptices are made from haptemes that determines which regulations are analysed. When defining haptemes the definition, classification and varied meanings of touch were discovered. Haptices include sharing a personal body space, meaning of touch-contact, context and using different communication channels. Communication distances are classified as exact distance, estimated distance and touch distance. Physical distance can be termed as very long, long, medium or very close. Social body space includes the body areas involved in sending and receiving haptices and applying different types of contacts. One or two hands can produce messages by using different hand shapes and orientations. This research classifies how the body can be identified into different areas such as body orientation, varied body postures, body position levels, social actions and which side of the body is used. Spatial body space includes environmental and situational elements. Haptemes of movements are recognised as the direction of movements, change of directions on the body, directions between people, pressure, speed, frequency, size, length, duration, pause, change of rhythm, shape, macro and micro movements. Haptices share multidimensional meanings and emotions. Research describes haptices in different situations enhancing sensory information and functioning also as an independent language. Haptices includes social-haptic confirmation system, social quick messages, body drawing, contact to the people and the environment, guiding and sharing art experiences through movements. Five stages of emotional differentiation were identified as very light, light, medium, heavy and very heavy touch. Haptices give the possibility to share different art, hobby and game experiences. A new communication system development based on the analysis of the research data is classified into different phases. These are experimental initiation, social deconstruction, developing the description of Social-Haptic communication and generalisation of the theory as well as finding and conceptualising the haptices and haptemes. The use and description of haptices is a social innovation, which illustrates the adaptive function of the body and perceptual senses that can be taught to a third party. Keywords: deafblindness, hapteme, haptic, haptices, movement, social-haptic communication, social-haptic confirmation system, tactile, touch
Resumo:
We have considered a two-band Hubbard model having interlaced Cu-3d(x2−y2) and O-2p(x, y) orbitals representing the CuO2 square planes. Simple CuO2 -cluster calculation suggests that the additional holes created by doping stay mainly on oxygen. Motion of an oxygen hole interlacing with the antiferromagnetically correlated background of copper spins, creates a string of high energy spin configuration of finite length giving mass renormalization. Another hole of opposite spin can now anneal this string tension providing a triangular pairing potential for large pair momentum. The latter implies unusual Bose condensation of the wake-bound compact Bose-like pairs on a non-zero momentum shell. Effect of disorder favouring condensation at the mobility edge is pointed out.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
This paper critiques a traditional approach to music theory pedagogy. It argues that music theory courses should draw on pedagogies that reflect the diversity and pluralism inherent in 21st century music making. It presents the findings of an action research project investigating the experiences of undergraduate students undertaking an innovative contemporary art music theory course. It describes the students’ struggle in coming to terms with a course that integrated composing, performing, listening and analysing coupled with what for many was their first exposure to the diversity of contemporary art music. The paper concludes with suggesting that the approach could be adopted more widely throughout music programs.
Resumo:
We report on ongoing research to develop a design theory for classes of information systems that allow for work practices that exhibit a minimal harmful impact on the natural environment. We call such information systems Green IS. In this paper we describe the building blocks of our Green IS design theory, which develops prescriptions for information systems that allow for: (1) belief formation, action formation and outcome measurement relating to (2) environmentally sustainable work practices and environmentally sustainable decisions on (3) a macro or micro level. For each element, we specify structural features, symbolic expressions, user abilities and goals required for the affordances to emerge. We also provide a set of testable propositions derived from our design theory and declare two principles of implementation.
Resumo:
The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn) and decorated 2D Sn (SnH and SnF) honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation.
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References
Resumo:
This research examined the implementation of clinical information system technology in a large Saudi Arabian health care organisation. The research was underpinned by symbolic interactionism and grounded theory methods informed data collection and analysis. Observations, a review of policy documents and 38 interviews with registered nurses produced in-depth data. Analysis generated three abstracted concepts that explained how imported technology increased practice and health care complexity rather than enhance quality patient care. The core category, Disseminating Change, also depicted a hierarchical and patriarchal culture that shaped the implementation process at the levels of government, organisation and the individual.
Resumo:
A study of the transport properties of layered crystalline semiconductors GeS (undoped and doped with Ag, P impurity) under quasihydrostatic pressure using Bridgman anvil system is made for the first time. Pressure-induced effects in undoped crystals reveal initial rise in resistivity followed by two broad peaks at higher pressures. Silver doping induces only minor changes in the behaviour except removing the second peak. Phosphorous impurity is found to have drastic effect on the transport properties. Temperature dependence of the resistivity exhibits two activation energies having opposite pressure coefficients. Results are discussed in the light of intrinsic features of the layered semiconductors.
Resumo:
The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. For the probability distribution of the transfer matrix R of the conductor we propose a distribution of maximum information entropy, constrained by the following physical requirements: (1) flux conservation, (2) time-reversal invariance, and (3) scaling with the length of the conductor of the two lowest cumulants of ω, where R=exp(iω→⋅Jbhat). The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.