975 resultados para gravity equation
Resumo:
An algorithm for computing the propagator for three-dimensional quadratic gravity with a gravitational Chern-Simons term, based on an extension of the three-dimensional Barnes-Rivers operators, is proposed. A systematic study of the tree-level unitarity of this theory is developed and its agreement with Newton's law is investigated by computing the effective nonrelativistic potential. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.
Resumo:
The stationary cosmological model without closed timelike curves of Godel type is obtained for the ideal dust matter source within the framework of the teleparallel gravity. For a specific choice of the teleparallel gravity parameters, this solution reproduces the causality violating stationary Godel solution in general relativity, in accordance with the teleparallel equivalent of general relativity. The relation between the axial-vector torsion and the cosmic vorticity is clarified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The introduction of defects is discussed under the Lagrangian formalism and Backlund transformations for the N = 1 super sinh-Gordon model. Modified conserved momentum and energy are constructed for this case. Some explicit examples of different Backlund soliton solutions are discussed. The Lax formulation within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In the context of the teleparallel equivalent of general relativity, the Weitzenbock manifold is considered as the limit of a suitable sequence of discrete lattices composed of an increasing number of smaller and smaller simplices, where the interior of each simplex (Delaunay lattice) is assumed to be flat. The link lengths l between any pair of vertices serve as independent variables, so that torsion turns out to be localized in the two-dimensional hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a vector undergoes a dislocation in relation to its initial position as it is parallel transported along the perimeter of the dual lattice (Voronoi polygon), we obtain the discrete analogue of the teleparallel action, as well as the corresponding simplicial vacuum field equations.
Resumo:
The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a good therapy to cure the nonunitarity of the aforementioned theory. Moreover, R+R-2 gravity in (2+1)D, which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in (2+1)D is not tree-level unitary and neither is topological three-dimensional R+R-2 gravity.
Resumo:
We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schrodinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.
Resumo:
The scattering of photons by a static gravitational field, treated as an external field, is discussed in the context of gravity with higher derivatives. It is shown that the R-2 sector of the theory does not contribute to the photon scattering, whereas the R-mu nu(2) sector produces dispersive (energy-dependent) photon propagation.
Resumo:
We study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.
Resumo:
The interaction of different kinds of solitary waves of the Camassa-Holm equation is investigated. We consider soliton-soliton, soliton-cuspon and cuspon-cuspon interactions. The description of these solutions had previously been shown to be reducible to the solution of an algebraic equation. Here we give explicit examples, numerically solving these algebraic equations and plotting the corresponding solutions. Further, we show that the interaction is elastic and leads to a shift in the position of the solitons or cuspons. We give the analytical expressions for this shift and represent graphically the coupled soliton-cuspon, soliton-soliton and cuspon-cuspon interactions.
Resumo:
In this paper we discuss the nonlinear propagation of waves of short wavelength in dispersive systems. We propose a family of equations that is likely to describe the asymptotic behaviour of a large class of systems. We then restrict our attention to the analysis of the simplest nonlinear short-wave dynamics given by U-0 xi tau, = U-0 - 3(U-0)(2). We integrate numerically this equation for periodic and non-periodic boundary conditions, and we find that short waves may exist only if the amplitude of the initial profile is not too large.