998 resultados para glucose syrup


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5′‐phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with D‐sorbitol or D‐mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O‐acetyl‐L‐serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N‐deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]‐sulphate feeding experiments showed that the addition of glucose to dark‐treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N‐deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co‐ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergistically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To investigate how life style factors such as alcohol consumption and physical activity relate to the serum apoB / apoA-I ratio in a cohort of middle-aged women with varying degrees of glucose tolerance. DESIGN Observational, cross-sectional cohort study. SETTING Research laboratory at a University Hospital. SUBJECTS A screened cohort of 64-year-old postmenopausal women with varying degrees of glucose tolerance, ranging from diabetes (n = 232), impaired (n = 212) and normal (n = 191) glucose tolerance. MAIN OUTCOME MEASURE ApoB / apoA-I ratio in relation to alcohol consumption and physical activity as assessed by questionnaires. RESULTS Alcohol consumption and regular physical activity at high levels were inversely associated with the serum apoB / apoA-I ratio independently of confounding factors such as obesity, lipid-lowering treatment, degree of glucose tolerance and hormone replacement therapy. Alcohol seemed related to the apoB / apoA-I ratio mainly through increasing apoA-I, whereas physical activity seemed mainly related to lowering of apoB. Alcohol consumption above a daily intake of 8.9 g, i.e. less than a glass of wine was accompanied by a decrease in apoB / apoA-I ratio. CONCLUSIONS Amongst these 64-year-old women with varying degrees of glucose tolerance, a moderate alcohol intake and regular physical exercise leading to sweating were associated with lower apoB / apoA-I ratio and these effects seem to be additive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY PRINCIPLE To estimate the prevalence of unknown impaired glucose metabolism, also referred to as prediabetes (PreD), and unknown type 2 diabetes mellitus (T2DM) among subjectively healthy Swiss senior citizens. The fasting plasma glucose (FPG) and glycated haemoglobin A1c (HbA1c) levels were used for screening. A total of 1 362 subjects were included (613 men and 749 women; age range 60-99 years). Subjects with known T2DM were excluded. METHODS The FPG was processed immediately for analysis under standardised preanalytical conditions in a cross-sectional cohort study; plasma glucose levels were measured by means of the hexokinase procedure, and HbA1c was measured chromatographically and classified using the current American Diabetes Association (ADA) criteria. RESULTS The crude prevalence of individuals unaware of having prediabetic FPG or HbA1c levels, was 64.5% (n = 878). Analogously, unknown T2DM was found in 8.4% (n = 114) On the basis of HbA1c criteria alone, significantly more subjects with unknown fasting glucose impairment and laboratory T2DM could be identified than with the FPG. The prevalence of PreD as well as of T2DM increased with age. The mean HOMA indices (homeostasis model assessment) for the different age groups, between 2.12 and 2.59, are consistent with clinically hidden disease and are in agreement with the largely orderly Body Mass Indices found in the normal range. CONCLUSIONS Laboratory evidence of impaired glucose metabolism and, to a lesser extent, unknown T2DM, has a high prevalence among subjectively healthy older Swiss individuals. Laboratory identification of people with unknown out-of-range glucose values and overt diabetic hyperglycaemia might improve the prognosis by delaying the emergence of overt disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lack of linearity and sensitivity, oxygen dependence, biofouling and tissue inflammation hinder the development of implantable biosensors for continuous monitoring of glucose. Herein, we report the development of stacked outer membranes based on LBL/PVA hydrogels that improve sensor sensitivity, linearity, oxygen independence and counter biofouling and inflammation. While the inner LBL membrane affords tunable diffusivity, the outer PVA is capable of releasing anti-inflammatory drugs/tissue response modifying agents to counter acute and chronic inflammation, and to induce neo-angiogenesis at the implant site. Sensors were fabricated by immobilizing GOx enzyme on top of 50 μm platinum wires, followed by deposition of stacked LBL/PVA hydrogel membranes. The response of the sensors at 0.7V to various glucose concentrations was studied. Michelis-Menten analysis was performed to quantify sensor performance in terms of linearity and oxygen dependence. The interplay between sensor performance and inward glucose diffusivity was elucidated using (i) various LBL membranes and (ii) various freeze-thaw (FT) cycles of PVA. Incorporation of LBL/PVA stacked membranes resulted in an 8 fold increase in sensor linearity and a 9 fold decrease in oxygen dependence compared to controls. The enhancement in the sensor performance is attributed to (i) the oxygen storing capability of PVA hydrogel due to the formation of hydrophobic domains during its freezing/ thawing employed for its physical crosslinking and (ii) regulation of glucose flux by the inner LBL membrane. Such membranes offer significant advantages over presently available outer membranes in lieu of (i) their ability to control inflammation, (ii) their modulus that closely matches that of subcutaneous human tissue, (iii) non-necessity of reactive chemical crosslinking agents, (iv) tunable sensitivity and (v) supplemental storage of oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus occurs in two forms, insulin-dependent (IDDM, formerly called juvenile type) and non-insulin dependent (NIDDM, formerly called adult type). Prevalence figures from around the world for NIDDM, show that all societies and all races are affected; although uncommon in some populations (.4%), it is common (10%) or very common (40%) in others (Tables 1 and 2).^ In Mexican-Americans in particular, the prevalence rates (7-10%) are intermediate to those in Caucasians (1-2%) and Amerindians (35%). Information about the distribution of the disease and identification of high risk groups for developing glucose intolerance or its vascular manifestations by the study of genetic markers will help to clarify and solve some of the problems from the public health and the genetic point of view.^ This research was designed to examine two general areas in relation to NIDDM. The first aims to determine the prevalence of polymorphic genetic markers in two groups distinguished by the presence or absence of diabetes and to observe if there are any genetic marker-disease association (univariate analysis using two by two tables and logistic regression to study the individual and joint effects of the different variables). The second deals with the effect of genetic differences on the variation in fasting plasma glucose and percent glycosylated hemoglobin (HbAl) (analysis of Covariance for each marker, using age and sex as covariates).^ The results from the first analysis were not statistically significant at the corrected p value of 0.003 given the number of tests that were performed. From the analysis of covariance of all the markers studied, only Duffy and Phosphoglucomutase were statistically significant but poor predictors, given that the amount they explain in terms of variation in glycosylated hemoglobin is very small.^ Trying to determine the polygenic component of chronic disease is not an easy task. This study confirms the fact that a larger and random or representative sample is needed to be able to detect differences in the prevalence of a marker for association studies and in the genetic contribution to the variation in glucose and glycosylated hemoglobin. The importance that ethnic homogeneity in the groups studied and standardization in the methodology will have on the results has been stressed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzed the relationship between fasting blood glucose (FBG) and 8-year mortality in the Hypertension Detection Follow-up Program (HDFP) population. Fasting blood glucose (FBG) was examined both as a continuous variable and by specified FBG strata: Normal (FBG 60–100 mg/dL), Impaired (FBG ≥100 and ≤125 mg/dL), and Diabetic (FBG>125 mg/dL or pre-existing diabetes) subgroups. The relationship between type 2 diabetes was examined with all-cause mortality. This thesis described and compared the characteristics of fasting blood glucose strata by recognized glucose cut-points; described the mortality rates in the various fasting blood glucose strata using Kaplan-Meier mortality curves, and compared the mortality risk of various strata using Cox Regression analysis. Overall, mortality was significantly greater among Referred Care (RC) participants compared to Stepped Care (SC) {HR = 1.17; 95% CI (1.052,1.309); p-value = 0.004}, as reported by the HDFP investigators in 1979. Compared with SC participants, the RC mortality rate was significantly higher for the Normal FBG group {HR = 1.18; 95% CI (1.029,1.363); p-value = 0.019} and the Impaired FBG group, {HR = 1.34; 95% CI (1.036,1.734); p-value = 0.026,}. However, for the diabetic group, 8-year mortality did not differ significantly between the RC and SC groups after adjusting for race, gender, age, smoking status among Diabetic individuals {HR = 1.03; 95% CI (0.816,1.303); p-value = 0.798}. This latter finding is possibly due to a lack of a treatment difference of hypertension among Diabetic participants in both RC and SC groups. The largest difference in mortality between RC and SC was in the Impaired subgroup, suggesting that hypertensive patients with FBG between 100 and 125 mg/dL would benefit from aggressive antihypertensive therapy.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^