911 resultados para fluoride effect on enamel remineralization
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
The aim of this study was to verify the drying effect on the reproducibility of DIAGNOdent (Dd) devices to detect caries-like lesions. Three areas were created in each of the 34 bovine incisors: sound (S), demineralized (DE) and remineralized (RE). One examiner measured each area with two Dd devices (denominated X and Y), twice under humid, and twice under dry condition. Intra-rater agreement according each device and inter-device agreement were estimated by kappa statistics (k). Intra-rater agreement for device Y was substantial under humid (k DE=0.68 and k RE+S=0.68) and dry condition (k DE=0.64 and k RE+S=0.67). For device X, it was substantial under humid condition (k DE=0.57 and k RE+S=0.49), and it was almost perfect after air drying (k DE=1.0 and kRE+S=1.0). Inter-device agreement was slight (k =0.17) under humid condition, and it was substantial under dry condition (k =0.62). As reproducibility increased under dry condition, drying is advised to detect caries-like lesions on free smooth surfaces when different devices are used.
Resumo:
The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.
Resumo:
OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (μTBS) and microshear bond strength (μSBS) tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0)C/24 h) specimens were stressed (0.5 mm/min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.
Effect of therapeutic dose X rays on mechanical and chemical properties of esthetic dental materials
Resumo:
The aim of this study was to investigate the influence of therapeutic dose X rays on the microhardness (MH) and degree of conversion (DC) of two different esthetic restorative dental materials. The materials were photo-activated with a LED light-curing unit using three cure-times: 5, 20 and 40 seconds. The photo-activation was carried out in two distinct periods: before and after irradiation with doses of 5, 35 and 70 Gy, from a 6 MV X rays beam. In accordance with the methodology used, it was conclude that a therapeutic dose does not have a detrimental effect on the photoinitiator molecules, because the photo-activation occurred after they were irradiated. When the irradiation was applied before photo-activation, the materials showed MH improvement, but when photo-activation was performed after irradiation, there was less improvement. However, there was no correlation between MH and DC. Thus, a therapeutic dose applied to cured material can promote linking and breaking of chain bonds in a non-linear way.
Resumo:
Objective: The objective of this study was to evaluate the influence of different Er:YAG laser (lambda = 2.94 mu m) energy parameters on the microtensile bond strength (mu TBS) and superficial morphology of bovine enamel bleached with 16% carbamide peroxide. Background: Laser irradiation could improve adhesion to bleached enamel surfaces. Methods: Sixty bovine enamel blocks (7x3x3 mm(3)) were randomly assigned to six groups according to enamel preparation procedures (n = 10): G1-bleaching and Er:YAG laser irradiation with 25.52 J/cm(2) (laser A, LA); G2-bleaching and Er:YAG laser irradiation with 4.42J/cm(2) (laser B, LB); G3-bleaching; G4-Er:YAG laser irradiation with 25.52 J/cm(2); G5-Er:YAG laser irradiation with 4.42J/cm(2); G6-control, no treatment. G1 to G3 were bleached for 6 h during 21 days. Afterwards, enamel surfaces in all groups were slightly abraded with 600-grit SiC papers and G1, G2, G4 and G5 were irradiated according to each protocol. Enamel blocks were then restored with an etch-and-rinse adhesive system and a 4-mm thick composite buildup was made in two increments (n = 9). After 24 h, restored blocks were serially sectioned with a cross-section area of similar to 1 mm(2) at the bonded interface and tested in tension in a universal testing machine (1 mm/min). Failure mode was determined at a magnification of x100 using a stereomicroscope. One treated block of each group was selected for scanning electron microscopy (SEM) analysis. mu TBS data were analyzed by two-way ANOVA and no statistical differences were observed among groups. Results: Mean bond strengths (SD) in MPa were: G1-30.4(6.2); G2-27.9(8.5); G3-32.3(3.9); G4-23.7(5.8); G5-29.3(6.0); G6-29.1(6.1). A large number of adhesive failures was recorded for bleached and irradiated enamel surfaces. Conclusions: Bleached enamel surfaces mu TBS values were not significantly different from those of unbleached enamel. Even though Er:YAG laser irradiation with both parameters had no influence on mu TBS for bleached and unbleached enamel, SEM analysis revealed that Er:YAG laser irradiation with 25.52J/cm(2) should not be recommended, as enamel ablation was observed, whereas irradiation with 4.42J/cm(2) did not promote any remarkable changes on enamel surface.
Resumo:
Rumen fermentation and methane emission for eucalyptus (Eucalyptus citriodora) fresh leaves (FL) or residue leaves (RL), after essential oil extraction from eucalyptus leaves in comparison with alfalfa (Medicago sativa) hay, were investigated in vitro. Eucalyptus FL and RL were obtained from the Distillery Trees Barras Company, Torrinha City, Sao Paulo, Brazil. The semi-automatic system of gas production was used to measure gas production, methane emission and rumen fermentation after 24 h incubation in vitro. The results showed that the crude protein (CP) contents were 76.4, 78.1 and 181.9 g kg(-1) DM for eucalyptus FL, RL and alfalfa hay, respectively. The neutral-detergent fibre (NDF) and acid-detergent fibre (ADF) were significantly lower in eucalyptus FL and RL than alfalfa hay. The Eucalyptus fresh and residue leaves were rich in total phenols (TP) and total tannins (TT) but had negligible content of condensed tannins (CT). There was significant reduction in cumulative gas production about 54 and 51% with eucalyptus FL and RL, respectively, compared with alfalfa hay. The methane emission (mL/g DM) was reduced (P<0.05) by 53 and 57% with eucalyptus FL and RL, respectively, but the reduction was 21 and 16% when expressed on truly digested organic matter basis. There were a decline (P<0.05) in true dry and organic matter degradation in vitro in eucalyptus FL and RL compared with alfalfa hay substrate. The partitioning factor values were higher (P<0.05) in eucalyptus FL and RL than alfalfa hay. There was no significant difference observed between eucalyptus FL, RL and alfalfa hay in protozoa count. It is concluded that the eucalyptus leaves have potential effect to mitigate CH4 production in vitro, which may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
Resumo:
Background: Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-alpha) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-alpha pathway and its downstream molecular effects is lacking. Methodology/Principal Findings: In the present work we describe a possible TNF-alpha receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (+/- 0.7) times higher than in adult worms. Downstream members of the known human TNF-alpha pathway were identified by an in silico analysis, revealing a possible TNF-alpha signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-alpha just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-alpha caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance: We describe the possible molecular elements and targets involved in human TNF-alpha effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin.
Resumo:
The objectives of this study were to characterise four essential oils (EO) chemically and to evaluate their effect on ruminal fermentation and methane emission in vitro. The investigated EO were isolated from Achillea santolina, Artemisia judaica, Schinus terebinthifolius and Mentha microphylla, and supplemented at four levels (0, 25, 50 and 75 l) to 75ml of buffered rumen fluid plus 0.5 g of substrate. The main components of the EO were piperitone (49.1%) and camphor (34.5%) in A. judaica, 16-dimethyl 15-cyclooactdaiene (60.5%) in A. santolina, piperitone oxide (46.7%) and cis-piperitone oxide (28%) in M. microphylla, and -muurolene (45.3%) and -thujene (16.0%) in S. terebinthifolius. The EO from A. santolina (at 25 and 50 l), and all levels of A. judaica increased the gas production significantly, but S. terebinthifolius (at 50 and 75 l), A. santolina (at 75 l) and all levels of M. microphylla decreased the gas production significantly in comparison with the control. The highest levels of A. santolina and A. judaica, and all doses from M. microphylla EO inhibited the methane production along with a significant reduction in true degradation of dry matter and organic matter, protozoa count and NH3-N concentration. It is concluded that the evaluated EO have the potential to affect ruminal fermentation efficiency and the EO from M. microphylla could be a promising methane mitigating agent.
Resumo:
An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N(2) fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both mangroves were able to degrade the hydrocarbons added; however, whereas the majority of oil added to the mesocosm derived from the polluted mangrove was degraded in the 75 days of the experiment, there was only partially degradation in the mesocosm derived from the pristine mangrove. qPCR showed that the addition of oil led to an increase in rrs gene copy numbers in both mesocosms, having almost no effect on the nifH copy numbers in the pristine mangrove. Sequencing of nifH clones indicated that the changes promoted by the oil in the polluted mangrove were greater than those observed in the pristine mesocosm. The main effect observed in the polluted mesocosm was the selection of a single phylotype which is probably adapted to the presence of petroleum. These results, together with previous reports, give hints about the relationship between N(2) fixation and hydrocarbon degradation in natural ecosystems.
Resumo:
It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.
Effect of Antioxidants and Corrosion Inhibitor Additives on the Quenching Performance of Soybean Oil
Resumo:
Cooling curve analysis was used to evaluate the effect of corrosion inhibitor additives and antioxidants on the quenching properties of soybean oil. The results showed that addition of corrosion inhibitors provided significant changes in the cooling curve behavior and of the yellow metal corrosion inhibitors evaluated tolyltriazole exhibits the greatest rate acceleration of heat transfer. However, the presence of antioxidants did not exhibit a significant effect on quenching properties of soybean oil. (C)2010 Journal of Mechanical Engineering. All rights reserved.
Resumo:
In this study, the influence of the processing conditions and the addition of trans-polyoctenylene rubber (TOR) on Mooney viscosity, tensile properties, hardness, tearing resistance, and resilience of natural rubber/styrene-butadiene rubber blends was investigated. The results obtained are explained in light of dynamic mechanical and morphological analyses. Increasing processing time produced a finer blend morphology, which resulted in an improvement in the mechanical properties. The addition of TOR involved an increase in hardness, a decrease in tear resistance, and no effect on the resilience. It resulted in a large decrease in the Mooney viscosity and a slight decrease in the tensile properties if the components of the compounds were not properly mixed. The results indicate that TOR acted more as a plasticizer than a compatibilizer. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Minimal pasteurization of orange juice (OJ) consists of using minimum holding time and temperature to ensure partial inactivation of pectin methylesterase (PME). This process produces juice with preserved sensory attributes and has a better acceptance by consumers when compared with commercially pasteurized OJ. Sensory profile and physical-chemical characteristics of minimally processed OJ was determined, during refrigerated storage, for two OJ blends with different pH values and the same level of PME thermal inactivation. A selected and trained sensorial panel (n = 16) performed sensory analysis, based on a quantitative descriptive analysis, twice a week for 30 days, evaluating the attributes of appearance (suspended particles and color intensity), odor (natural orange and fermented orange) and flavor (orange characteristic, fermented orange, acid and bitter taste). Storage presented great effect on OJ sensory profile; however, it was not noticeable on physical-chemical characteristics.