910 resultados para disjunctive logic programming
Resumo:
The Lucia jig is a technique that promotes neuromuscular reprogramming of the masticatory system and allows the stabilization of the mandible without the interference of dental contacts, maintaining the mandible position in harmonic condition with the musculature in normal subjects or in patients with temporomandibular dysfunction (TMD). This study aimed to electromyographically analyze the activity (RMS) of the masseter and temporal muscles in normal subjects (control group) during the use of an anterior programming device, the Lucia jig, in place for 0, 5, 10, 20 and 30 minutes to demonstrate its effect on the stomatognathic system. Forty-two healthy dentate individuals (aged 21 to 40 years) with normal occlusion and without parafunctional habits or ternporomandibular dysfunction (RDC/TMD) were evaluated on the basis of the electromyographic activity of the masseter and temporal muscles before placement of a neuromuscular re-programming device, the Lucia jig, on the upper central incisors. There were no statistically significant differences (p < 0.05) in the electromyographic activity of the masticatory muscles in the different time periods. The Lucia jig changed the electromyographic activity by promoting a neuromuscular reprogramming. In most of the time periods, it decreased the activation of the masticatory muscles, showing that this device has wide applicability in dentistry. The use of a Lucia jig over 0, 5, 10, 15, 20 and 30 minutes did not promote any statistically significant increase in muscle activity despite differences in the data, thus showing that this intra-oral device can be used in dentistry.
Resumo:
Aims: An extensive variety of prenatal insults are associated with an increased incidence of metabolic and cardiovascular disorders in adult life. We previously demonstrated that maternal global nutrient restriction during pregnancy leads to increased blood pressure and endothelial dysfunction in the adult offspring. This study aimed to assess whether prenatal exposure to nutritional insult has transgenerational effects in F-2 and F-3 offspring. Main methods: For this, female Wistar rats were randomly divided into two groups on day 1 of pregnancy: a control group fed standard chow ad libitum and a restricted group fed 50% of the ad libitum intake throughout gestation. At delivery, all animals were fed a standard laboratory chow diet. At 11 weeks of age, one female and one male from each restricted litter were randomly selected and mated with rats from another restricted litters in order to generate the F-2 offspring. The same procedure produced F-3 generation. Similarly, the rats in the control group were bred for each generation. Key Findings: Our findings show that the deleterious effects of maternal nutrient restriction to which the F-0 mothers were exposed may not be limited to the male first generation. In fact, we found that elevated blood pressure, an impaired vasodilatory response to acetylcholine and alterations in NO production were all transferred to the subsequent males from F-2 and F-3 generations. Significance: Our data show that global nutrient restriction during pregnancy results in a specific phenotype that can be passed transgenerationally to a second and third generation. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
2-Methylisoborneol (MIB) and geosmin (GSM) are sub products from algae decomposition and, depending on their concentration, can be toxic: otherwise, they give unpleasant taste and odor to water. For water treatment companies it is important to constantly monitor their presence in the distributed water and avoid further costumer complaints. Lower-cost and easy-to-read instrumentation would be very promising in this regard. In this study, we evaluate the potentiality of an electronic tongue (ET) system based on non-specific polymeric sensors and impedance measurements in monitoring MIB and GSM in water samples. Principal component analysis (PCA) applied to the generated data matrix indicated that this ET was capable to perform with remarkable reproducibility the discrimination of these two contaminants in either distilled or tap water, in concentrations as low as 25 ng L-1. Nonetheless, this analysis methodology was rather qualitative and laborious, and the outputs it provided were greatly subjective. Also, data analysis based on PCA severely restricts automation of the measuring system or its use by non-specialized operators. To circumvent these drawbacks, a fuzzy controller was designed to quantitatively perform sample classification while providing outputs in simpler data charts. For instance, the ET along with the referred fuzzy controller performed with a 100% hit rate the quantification of MIB and GSM samples in distilled and tap water. The hit rate could be read directly from the plot. The lower cost of these polymeric sensors allied to the especial features of the fuzzy controller (easiness on programming and numerical outputs) provided initial requirements for developing an automated ET system to monitor odorant species in water production and distribution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To report the results of cochlear implantation via the middle fossa approach in 4 patients, discuss the complications, and present a detailed description of the programming specifications in these cases. Study Design: Retrospective case review. Setting: Tertiary-care referral center with a well-established cochlear implant program. Patients: Four patients with bilateral canal wall down mastoid cavities who underwent the middle fossa approach for cochlear implantation. Interventions: Cochlear implantation and subsequent rehabilitation. A middle fossa approach with cochleostomy was successfully performed on the most superficial part of the apical turn in 4 patients. A Nucleus 24 cochlear implant system was used in 3 patients and a MED-EL Sonata Medium device in 1 patient. The single electrode array was inserted through a cochleostomy from the cochlear apex and occupied the apical, middle, and basal turns. Telemetry and intraoperative impedance recordings were performed at the end of surgery. A CT scan of the temporal bones was performed to document electrode insertion for all of the patients. Main Outcome Measures: Complications, hearing thresholds, and speech perception outcomes were evaluated. Results: Neural response telemetry showed present responses in all but 1 patient, who demonstrated facial nerve stimulation during the test. Open-set speech perception varied from 30% to 100%, despite the frequency allocation order of the MAP. Conclusion: Cochlear implantation via the middle cranial fossa is a safe approach, although it is a challenging procedure, even for experienced surgeons.
Resumo:
We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear P. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The ever-growing production and the problematization of Environmental Health have shown the need to apprehend complex realities and deal with uncertainties from the most diversified instruments which may even incorporate local aspects and subjectivities by means of qualitative realities, while broadening the capacity of the information system. This paper presents a view on the reflection upon some challenges and possible convergences between the ecosystemic approach and the Fuzzy logic in the process of dealing with scientific information and decision-making in Environmental Health.
Resumo:
OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment.
Resumo:
Due to the growing interest in social networks, link prediction has received significant attention. Link prediction is mostly based on graph-based features, with some recent approaches focusing on domain semantics. We propose algorithms for link prediction that use a probabilistic ontology to enhance the analysis of the domain and the unavoidable uncertainty in the task (the ontology is specified in the probabilistic description logic crALC). The scalability of the approach is investigated, through a combination of semantic assumptions and graph-based features. We evaluate empirically our proposal, and compare it with standard solutions in the literature.
Resumo:
The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).
Resumo:
[EN] Programming software for controlling robotic systems in order to built working systems that perform adequately according to their design requirements remains being a task that requires an important development effort. Currently, there are no clear programming paradigms for programming robotic systems, and the programming techniques which are of common use today are not adequate to deal with the complexity associated with these systems. The work presented in this document describes a programming tool, concretely a framework, that must be considered as a first step to devise a tool for dealing with the complexity present in robotics systems. In this framework the software that controls a system is viewed as a dynamic network of units of execution inter-connected by means of data paths. Each one of these units of execution, called a component, is a port automaton which provides a given functionality, hidden behind an external interface specifying clearly which data it needs and which data it produces. Components, once defined and built, may be instantiated, integrated and used as many times as needed in other systems. The framework provides the infrastructure necessary to support this concept for components and the inter communication between them by means of data paths (port connections) which can be established and de-established dynamically. Moreover, and considering that the more robust components that conform a system are, the more robust the system is, the framework provides the necessary infrastructure to control and monitor the components than integrate a system at any given instant of time.
Resumo:
[EN] This paper describes VPL, a Virtual Programming Lab module for Moodle, developed at the University of Las Palmas of Gran Canaria (ULPGC) and released for free uses under GNU/GPL license. For the students, it is a simple development environment with auto evaluation capabilities. For the instructors, it is a students' work management system, with features to facilitate the preparation of assignments, manage the submissions, check for plagiarism, and do assessments with the aid of powerful and flexible assessment tools based on program testing, all of that being independent of the programming language used for the assignments and taken into account critical security issues.
Resumo:
Many combinatorial problems coming from the real world may not have a clear and well defined structure, typically being dirtied by side constraints, or being composed of two or more sub-problems, usually not disjoint. Such problems are not suitable to be solved with pure approaches based on a single programming paradigm, because a paradigm that can effectively face a problem characteristic may behave inefficiently when facing other characteristics. In these cases, modelling the problem using different programming techniques, trying to ”take the best” from each technique, can produce solvers that largely dominate pure approaches. We demonstrate the effectiveness of hybridization and we discuss about different hybridization techniques by analyzing two classes of problems with particular structures, exploiting Constraint Programming and Integer Linear Programming solving tools and Algorithm Portfolios and Logic Based Benders Decomposition as integration and hybridization frameworks.