940 resultados para circuits and Systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M(2)AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M(2)AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context-aware computing is currently considered the most promising approach to overcome information overload and to speed up access to relevant information and services. Context-awareness may be derived from many sources, including user profile and preferences, network information, sensor analysis; usually context-awareness relies on the ability of computing devices to interact with the physical world, i.e. with the natural and artificial objects hosted within the "environment”. Ideally, context-aware applications should not be intrusive and should be able to react according to user’s context, with minimum user effort. Context is an application dependent multidimensional space and the location is an important part of it since the very beginning. Location can be used to guide applications, in providing information or functions that are most appropriate for a specific position. Hence location systems play a crucial role. There are several technologies and systems for computing location to a vary degree of accuracy and tailored for specific space model, i.e. indoors or outdoors, structured spaces or unstructured spaces. The research challenge faced by this thesis is related to pedestrian positioning in heterogeneous environments. Particularly, the focus will be on pedestrian identification, localization, orientation and activity recognition. This research was mainly carried out within the “mobile and ambient systems” workgroup of EPOCH, a 6FP NoE on the application of ICT to Cultural Heritage. Therefore applications in Cultural Heritage sites were the main target of the context-aware services discussed. Cultural Heritage sites are considered significant test-beds in Context-aware computing for many reasons. For example building a smart environment in museums or in protected sites is a challenging task, because localization and tracking are usually based on technologies that are difficult to hide or harmonize within the environment. Therefore it is expected that the experience made with this research may be useful also in domains other than Cultural Heritage. This work presents three different approaches to the pedestrian identification, positioning and tracking: Pedestrian navigation by means of a wearable inertial sensing platform assisted by the vision based tracking system for initial settings an real-time calibration; Pedestrian navigation by means of a wearable inertial sensing platform augmented with GPS measurements; Pedestrian identification and tracking, combining the vision based tracking system with WiFi localization. The proposed localization systems have been mainly used to enhance Cultural Heritage applications in providing information and services depending on the user’s actual context, in particular depending on the user’s location.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dielectric Elastomers (DE) are incompressible dielectrics which can experience deviatoric (isochoric) finite deformations in response to applied large electric fields. Thanks to the strong electro-mechanical coupling, DE intrinsically offer great potentialities for conceiving novel solid-state mechatronic devices, in particular linear actuators, which are more integrated, lightweight, economic, silent, resilient and disposable than equivalent devices based on traditional technologies. Such systems may have a huge impact in applications where the traditional technology does not allow coping with the limits of weight or encumbrance, and with problems involving interaction with humans or unknown environments. Fields such as medicine, domotic, entertainment, aerospace and transportation may profit. For actuation usage, DE are typically shaped in thin films coated with compliant electrodes on both sides and piled one on the other to form a multilayered DE. DE-based Linear Actuators (DELA) are entirely constituted by polymeric materials and their overall performance is highly influenced by several interacting factors; firstly by the electromechanical properties of the film, secondly by the mechanical properties and geometry of the polymeric frame designed to support the film, and finally by the driving circuits and activation strategies. In the last decade, much effort has been focused in the devolvement of analytical and numerical models that could explain and predict the hyperelastic behavior of different types of DE materials. Nevertheless, at present, the use of DELA is limited. The main reasons are 1) the lack of quantitative and qualitative models of the actuator as a whole system 2) the lack of a simple and reliable design methodology. In this thesis, a new point of view in the study of DELA is presented which takes into account the interaction between the DE film and the film supporting frame. Hyperelastic models of the DE film are reported which are capable of modeling the DE and the compliant electrodes. The supporting frames are analyzed and designed as compliant mechanisms using pseudo-rigid body models and subsequent finite element analysis. A new design methodology is reported which optimize the actuator performances allowing to specifically choose its inherent stiffness. As a particular case, the methodology focuses on the design of constant force actuators. This class of actuators are an example of how the force control could be highly simplified. Three new DE actuator concepts are proposed which highlight the goodness of the proposed method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The means through which the nervous system perceives its environment is one of the most fascinating questions in contemporary science. Our endeavors to comprehend the principles of neural science provide an instance of how biological processes may inspire novel methods in mathematical modeling and engineering. The application ofmathematical models towards understanding neural signals and systems represents a vibrant field of research that has spanned over half a century. During this period, multiple approaches to neuronal modeling have been adopted, and each approach is adept at elucidating a specific aspect of nervous system function. Thus while bio-physical models have strived to comprehend the dynamics of actual physical processes occurring within a nerve cell, the phenomenological approach has conceived models that relate the ionic properties of nerve cells to transitions in neural activity. Further-more, the field of neural networks has endeavored to explore how distributed parallel processing systems may become capable of storing memory. Through this project, we strive to explore how some of the insights gained from biophysical neuronal modeling may be incorporated within the field of neural net-works. We specifically study the capabilities of a simple neural model, the Resonate-and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling. While reflecting further biological plausibility, the RAF neuron is also analytically tractable, and thus may be implemented within neural networks. In the following thesis, we provide a brief overview of the different approaches that have been adopted towards comprehending the properties of nerve cells, along with the framework under which our specific neuron model relates to the field of neuronal modeling. Subsequently, we explore some of the time-dependent neurocomputational capabilities of the RAF neuron, and we utilize the model to classify logic gates, and solve the classic XOR problem. Finally we explore how the resonate-and-fire neuron may be implemented within neural networks, and how such a network could be adapted through the temporal backpropagation algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study explored how academics' beliefs about teaching and learning influenced their teaching in engineering science courses typically taught in the second or third year of 4-year engineering undergraduate degrees. Data were collected via a national survey of 166 U. S. statics instructors and interviews at two different institutions with 17 instructors of engineering science courses such as thermodynamics, circuits and statics. The study identified a number of common beliefs about how to best support student learning of these topics; each is discussed in relation to the literature about student development and learning. Specific recommendations are given for educational developers to encourage use of research-based instructional strategies in these courses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Object-oriented modelling languages such as EMOF are often used to specify domain specific meta-models. However, these modelling languages lack the ability to describe behavior or operational semantics. Several approaches have used a subset of Java mixed with OCL as executable meta-languages. In this experience report we show how we use Smalltalk as an executable meta-language in the context of the Moose reengineering environment. We present how we implemented EMOF and its behavioral aspects. Over the last decade we validated this approach through incrementally building a meta-described reengineering environment. Such an approach bridges the gap between a code-oriented view and a meta-model driven one. It avoids the creation of yet another language and reuses the infrastructure and run-time of the underlying implementation language. It offers an uniform way of letting developers focus on their tasks while at the same time allowing them to meta-describe their domain model. The advantage of our approach is that developers use the same tools and environment they use for their regular tasks. Still the approach is not Smalltalk specific but can be applied to language offering an introspective API such as Ruby, Python, CLOS, Java and C#.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Business and Information Technologies (BIT) project strives to reveal new insights into how modern IT impacts organizational structures and business practices using empirical methods. Due to its international scope, it allows for inter-country comparison of empirical results. Germany — represented by the European School of Management and Technologies (ESMT) and the Institute of Information Systems at Humboldt-Universität zu Berlin — joined the BIT project in 2006. This report presents the result of the first survey conducted in Germany during November–December 2006. The key results are as follows: • The most widely adopted technologies and systems in Germany are websites, wireless hardware and software, groupware/productivity tools, and enterprise resource planning (ERP) systems. The biggest potential for growth exists for collaboration and portal tools, content management systems, business process modelling, and business intelligence applications. A number of technological solutions have not yet been adopted by many organizations but also bear some potential, in particular identity management solutions, Radio Frequency Identification (RFID), biometrics, and third-party authentication and verification. • IT security remains on the top of the agenda for most enterprises: budget spending was increasing in the last 3 years. • The workplace and work requirements are changing. IT is used to monitor employees' performance in Germany, but less heavily compared to the United States (Karmarkar and Mangal, 2007).1 The demand for IT skills is increasing at all corporate levels. Executives are asking for more and better structured information and this, in turn, triggers the appearance of new decision-making tools and online technologies on the market. • The internal organization of companies in Germany is underway: organizations are becoming flatter, even though the trend is not as pronounced as in the United States (Karmarkar and Mangal, 2007), and the geographical scope of their operations is increasing. Modern IT plays an important role in enabling this development, e.g. telecommuting, teleconferencing, and other web-based collaboration formats are becoming increasingly popular in the corporate context. • The degree to which outsourcing is being pursued is quite limited with little change expected. IT services, payroll, and market research are the most widely outsourced business functions. This corresponds to the results from other countries. • Up to now, the adoption of e-business technologies has had a rather limited effect on marketing functions. Companies tend to extract synergies from traditional printed media and on-line advertising. • The adoption of e-business has not had a major impact on marketing capabilities and strategy yet. Traditional methods of customer segmentation are still dominating. The corporate identity of most organizations does not change significantly when going online. • Online sales channel are mainly viewed as a complement to the traditional distribution means. • Technology adoption has caused production and organizational costs to decrease. However, the costs of technology acquisition and maintenance as well as consultancy and internal communication costs have increased.