998 resultados para application gateway
Resumo:
Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.
Resumo:
Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).
Resumo:
Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.
Resumo:
Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).
Resumo:
Ready-to-use screen printed glucose sensors are fabricated using Prussian Blue (PB) and Cobalt Phthalocyanine (CoPC) mediated carbon inks as working electrodes. The reference and counter electrodes are screen printed using silver/silver chloride and graphitic carbon paste respectively. The screen printed reference electrodes (internal reference electrode (IRE)) are found to be stable for more than 60 minutes when examined with saturated calomel electrode. Optimal operating voltage for PB and CoPC screen printed sensors are determined by hydrodynamic voltammetric technique. Glucose oxidase is immobilized on the working electrodes by cross-linking method. PB mediated glucose sensor exhibits a sensitivity of 5.60 mA cm(-2)/mM for the range, 10 to 1000 mu M. Sensitivity of CoPC mediated glucose sensor is found to be 5.224 mu A cm(-2)/mM and amperometeric response is linear for the range, 100 to 1500 mu M. Interference studies on the fabricated glucose sensors are conducted with species like uric acid and ascorbic acid. PB mediated sensors showed a completely interference-free behavior. The sensing characteristics of PB mediated glucose sensors are also studied in diluted human serum samples and the results are compared with the values obtained through standard clinical method. The co-efficient of variation is found to be less than 5%. (C) 2015 The Electrochemical Society. All rights reserved.
Resumo:
A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization. The enthalpy method was applied to solve this two-phase axisymmetrical melting problem Computational results of temperature fields were obtained, which provide useful information to practical laser treatment processing. The validity of enthalpy method in solving such problems is presented.
Resumo:
The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.
Resumo:
In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.
Resumo:
在应用激光技术加工复杂曲面时,通常以采样点集为插值点来建立曲面函数,然后实现曲面上任意坐标点的精确定位。人工神经网络的BP算法能实现函数插值,但计算精度偏低,往往达不到插值精确要求,造成较大的加工误差。提出人工神经网络的共轭梯度最优化插值新算法,并通过实例仿真,证明了这种曲面精确定位方法的可行性,从而为激光加工的三维精确定位提供了一种良好解决方案。这种方法已经应用在实际中。
Resumo:
Laminar-flow non-transferred DC plasma jets were generated by a torch with an inter-electrode insert by which the arc column was limited to a length of about 20 mm. Current–voltage characteristics, thermal efficiency and jet length, a parameter which changes greatly with the generating parameters in contrast with the almost unchangeable jet length of the turbulent plasma, were investigated systematically, by using the similarity theory combined with the corresponding experimental examination. Formulae in non-dimensional forms were derived for predicting the characteristics of the laminar plasma jet generation, within the parameter ranges where no transfer to turbulent flow occurs. Mean arc temperature in the torch channel and mean jet-flow temperature at the torch exit were obtained, and the results indicate that the thermal conductivity feature of the working gas seems to be an important factor affecting thermal efficiency of laminar plasma generation.
Resumo:
微机电系统(MEMS)技术的迅速崛起,推动了对其所用材料和结构的力学性能研究。简要介绍纳米硬度技术的发展展、理论模型和MTS公司的Nano Indenter XP系统的配置、测量原理及功能。并根据我们的一些研究结果,说明它在微机电系统中的应用。
Resumo:
The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.
Resumo:
A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.