961 resultados para apoptosis, ceramide, APC,p38, JNK, AKT, ASK, cell death


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is induced by the cleavage of a subset of cellular proteins by proteases of the caspase family. Numerous (hundreds) caspase substrates have been described but only for a few of them is the function of their cleavage by caspases well understood. In this review, apoptosis and caspases will first be introduced. The main focus will then be directed to the caspase substrates, the actual "workers" doing the job of mediating and regulating the apoptotic process. The caspase substrates whose functions upon cleavage have been carefully investigated and those that are potentially involved in neurodegenerative diseases will be discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The lysophosphatidic acid LPA₁ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA₁ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. METHODOLOGY/PRINCIPAL FINDINGS Male LPA₁-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice. CONCLUSIONS/SIGNIFICANCE These results reveal that the absence of the LPA₁ receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA₁ receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause serious risks to the infected host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Les caspases sont des protéases essentielles lors de l'induction de l'apoptose ou pour la maturation de certaines cytokines. Elles peuvent être divisées en deux groupes: les caspases initiatrices, qui sont les premières activées lors d'un signal pro-apoptotique, et les caspases effectrices, qui sont activées par les caspases initiatrices et sont responsables du clivage et de la dégradation des substrats cellulaires. Les caspases initiatrices sont activées dans des complexes de haut poids moléculaire: l'apoptosome pour la caspase-9 et le DISC pour la caspase-8. La caspase-2 est également une caspase initiatrice qui contient un domaine CARD. Cependant son mécanisme d'activation n'est pas encore connu. Lors de cette étude, nous avons découvert et caractérisé le complexe qui permet l'activation de la caspase-2. Ce complexe, appelé le PIDDosome, est composé de PIDD/LRDD, de la protéine adaptatrice RAIDD et de la protéase caspase-2. L'expression forcée de PIDD induit l'activation constitutive de la caspase-2. Cela entraîne la mort ou la sensibilisation à la mort des cellules selon la lignée étudiée. Cet effet est expliqué par une perte du potentiel de membrane de la mitochondrie, certainement dû à un effet direct de la caspase-2. Peu de choses sont connues sur PIDD: c'est une protéine contenant un domaine DD qui peut être induite par p53. Nous avons caractérisé PIDD et montré qu'elle est exprimée de façon ubiquitaire. PIDD est constitutivement auto-clivée environ au milieu de la protéine, ce qui génère deux fragments qui restent liés l'un à l'autre. Le fragment N-terminal a une activité régulatrice et le C-terminal une activité effectrice. De plus, PIDD peut se déplacer entre le cytoplasme et le noyau. Enfin, nous avons découvert que PIDD est également impliquée dans l'induction de NF¬ -κB en réponse à des dommages à l'ADN. PIDD est responsable de la modification par sumo de NEMO, étape nécessaire à l'induction de NF-κB après des dommages à l'ADN. Ainsi PIDD semble être à l'intersection de la décision que prend la cellule entre survivre et réparer les dommages, ou entrer en apoptose. Summary Caspases are a family of proteases that fulfill varied and often critical roles in mammalian apoptosis or proteolytic activation of cytokines. Caspases can be divided into two sub-groups: initiator caspases, which are the first activated after a pro-apoptotic signal, and effector caspases, which are activated by initiator caspases and that are responsible for the cleavage and degradation of cellular components. Initiator caspases are activated in high molecular weight platforms such as the apoptosome for caspase-9 or the DISC for caspase-8. Caspase-2 is a CARD-containing initiator caspase whose mechanism of activation was not yet known. In this study we have identified an activating platform for caspase-2. This high molecular weight complex, called the PIDDosome, is composed of PIDD/LRDD, the adaptor protein RAIDD and caspase-2. Constitutive expression of PIDD led to constitutive activation of caspase-2, which in some cell lines was sufficient to induce cell death while in others it merely sensitizes. Active caspase-2 was found to disturb directly the mitochondria by inducing a partial loss of the transmembrane potential. Very little was known on PIDD. It can be induce by p53 and inhibition of its expression by antisense oligonucleotides diminishes p53-dependent apoptosis. We decided to further characterize PIDD function and expression. PIDD possesses seven LRR, two Zu5 domains and one DD. It is ubiquitously expressed and appears to be constitutively cleaved by auto- processing into two main fragments equal in size. The two fragments remain bound to one another and constitute a regulatory N-terminal fragment and an active C-terminal fragment. In addition, PIDD can shuttle between the cytoplasm and the nucleus. Finally, investigating the possible relevance of new interaction partners, we found that PIDD is implicated in DNA damage-induced NF- κB. PIDD binds to RIP1 and to NEMO. In response to DNA damage, PIDD translocates to the nucleus and mediates sumo- modification of NEMO, a necessary step in DNA damage-induced NF-κB. All together these results raise the possibility that PIDD acts as a molecular switch between proliferation and repair, and apoptosis following DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Osteoporosis is a metabolic disorder characterized by a reduction in bone mass and deterioration in the microarchitectural structure of the bone, leading to a higher risk for spontaneous and fragility fractures.The main aim was to study the differences between human bone from osteoporotic and osteoarthritic patients about gene expression (osteogenesis and apoptosis), bone mineral density, microstructural and biomechanic parameters. METHODS We analyzed data from 12 subjects: 6 with osteoporotic hip fracture (OP) and 6 with hip osteoarthritis (OA), as the control group. All subjects underwent medical history, analytical determinations, densitometry, histomorphometric and biochemical study. The expression of 86 genes of osteogenesis and 86 genes of apoptosis was studied in pool of bone samples from patients with OP and OA by PCR array. RESULTS We observed that most of the genes of apoptosis and osteogenesis show a decrease in gene expression in the osteoporotic group in comparison with the osteoarthritic group. The histomorphometric study shows a lower bone quality in the group of patients with hip fractures compared to the osteoarthritic group. CONCLUSIONS The bone tissue of osteoporotic fracture patients is more fragile than the bone of OA patients. Our results showed an osteoporotic bone with a lower capacities for differentiation and osteoblastic activity as well as a lower rate of apoptosis than osteoarthritic bone. These results are related with structural and biochemical parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase-independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Le fer joue un rôle important dans la plupart des fonctions biologiques mais sa présence excessive provoque la production de molécules réactives d'oxygène (ROS) qui peuvent contribuer à diverses maladies. La protéine de stockage du fer, la ferritine H, capte l'excès en fer et le stocke sous forme non-toxique, ce qui empêche des dommages potentiels. La délétion de la ferritine H dans des souris knock-out a été essayée antérieurement, mais ces souris mouraient au stade précoce du développement embryonnaire. Pour étudier l'importance du fer, et en particulier son stockage dans la ferritine, et pour pouvoir mieux comprendre les fonctions de la ferritine H, nous avons créé un modèle de souris knock-out conditionnelles de la ferritine H, selon le système classique de Cre-LoxP. Le premier exon et la région du promoteur du gène de la ferritine H ont été entourés de sites loxP. La mortalité embryonnaire provoquée par la délétion constitutive du gène de la ferritine H a été confirmée en croisant nos souris avec des souris exprimant nestin-Cre1. En croisant nos souris avec des souris transgéniques Mx-Cre, nous avons observé que l'induction de Cre par injection de polyI-polyC provoque la délétion presque complète de la ferritine H dans le foie (> 99%) et la rate (> 88%). Ces tissus ont également perdu une grande partie de leur réserve de fer. Cette observation apporte pour la première fois la preuve in vivo que la ferritine H est indispensable pour le stockage du fer, que les fonctions de la ferritine H et de la ferritine L ne sont pas équivalentes, et que la ferritine L ne peut pas assumer seule la fonction de stockage du fer. Dans le foie des souris knock-out, l'expression de l'ARN messager de l'hepcidine a été induite après 10 jours. En même temps, l'expression de l'ARN messager des gènes codant pour des protéines de l'absorption de fer (DMT1, ferroportin, Dcytb1 et hephaestin) a été réprimée mais dans le duodénum seulement. L'expression d'hepcidine est inversément corrélée avec celle des gènes liés à l'absorption de fer. Cette observation corrobore des études antérieures. Mais, en plus, elle montre également que cette répression se produit seulement dans l'intestin. Nous pouvons ainsi tirer la conclusion suivante : ou bien l'hepcidine a un récepteur spécifique dans le duodénum ou bien les gènes liés à l'absorption de fer dans le duodénum ont un facteur spécifique de transcription sensible à l'hepcidine. Aucune répression de DMT1 et de ferroportin n'a été observée dans les macrophages de la rate après l'induction d'hepcidine. La délétion de ferritine H a entraîné une augmentation du taux de mortalité des cellules hépatiques, ainsi que des altérations dans l'architecture normale du tissu de la rate. Vu par l'immunohistologie, le nombre de lymphocytes B et T était réduit dans la rate, tendant à démontrer que la ferritine H et l'homéostase du fer jouent un rôle dans l'immunité. En conclusion, le modèle de souris knock-out conditionnelles de la ferritine H nous fournit un outil précieux pour l'étude in vivo du rôle joué par la ferritine dans l'homéostase du fer, dans les dommages créés par les ROS, ainsi que dans l'apoptose et l'immunité. Summary Iron plays an important role in most biological functions. However, excess of iron results in production of reactive oxygen species (ROS) which could substantially contribute to pathology of various diseases. Ferritin H scavenges excess of iron and stores it in non-toxic form and potentially prevents the damage. Fenitin H targeting in mice has been attempted before, however, straight knockout was lethal in early embryonic stage. To study the role of iron and its storage protein ferritin and to further elucidate ferritin H functions, we aimed at creating a conditional ferritin H knockout mouse model by classical Cre-LoxP system. First exon along with promoter region of the ferritin H gene was foxed. Embryonic lethality of the constitutive ferritin H deletion was confirmed by crossing the foxed mice with mice expressing nestin Cre-1 as transgene. Almost complete deletion was observed in liver (> 99%) and spleen (>88%) upon induction of Cre by injecting polyI-polyC in Fth Lox/Lox; MxCre mice. These tissues also lost substantial fraction of their iron stores. This provides first in vivo evidence that ferritin H is required for iron storage, ferritin H and L functions are not redundant and that ferritin L cannot perform iron storage function alone. Hepcidin mRNA expression was induced after 10 days in the livers of deleted mice and, simultaneously, mRNA expression of iron absorption related genes (DMT 1, ferroportin, Dcytb1 and hephaestin) was repressed in duodenum only. Hepcidin expression is inversely correlated with that of duodenal iron absorption related genes. This is in agreement with previous studies. However, we also show that this repression happens only in intestine. This leads to the conclusion that either hepcidin has a specific receptor in duodenum or the iron absorption related genes have duodenum specific transcription factor that is responsive to hepcidin. No repression of DMT1 and ferroportin was observed in spleen macrophages upon hepcidin induction. Ferritin H deletion showed increased cell death in liver and disruption of normal architecture of spleen. B lymphocytes were reduced in spleen on immunohistology which point towards a role of ferritin H and iron homeostasis in immunity. In conclusion, ferritin H conditional knockout mouse model provides us with an invaluable tool to study the in vivo role of ferritin H in iron homeostasis, ROS mediated damage, apoptosis and immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. METHODS: Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. RESULTS: Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. INTERPRETATION: The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results: The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions: Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Clinical evidence indicates that tumors recurring within previously irradiated fields are highly invasive and metastatic, suggesting a role of the tumor stroma in this effect. Angiogenesis plays a critical role in tumor progression. Ionizing radiation is known to induce apoptosis of angiogenic endothelial cells, while the effect on quiescent endothelial cells and de novo angiogenesis is not well characterized. We recently observed that irradiation of normal tissue prevents tumor- and growth factor-induced angiogenesis. The main aim of my thesis work was to characterize the mechanisms of radiation-mediated inhibition of angiogenesis. To this purpose we used a combination of in vivo and ex vivo studies on irradiated healthy tissue, and in vitro irradiation experiments using angiogenesis models and isolated endothelial cells. We found that irradiation did not induce endothelial cell apoptosis and did not disrupt quiescent vessels within irradiated skin. Radiation reduced the recruitment of leukocytes to angiogenic Matrigel plugs, but this effect was rather secondary to decreased angiogenesis, as exogenous addition of leucocytes to Matrigel plugs did not rescue the angiogenesis defects. To ascertain the direct effect of radiation on endothelial cells, we used the mouse aortic ring assay to test the sprouting capacity of irradiated endothelial cells ex vivo and in vitro, and found that irradiation completely suppressed endothelial cell sprouting. Using HUVEC cells, we showed that irradiation of quiescent confluent endothelial cells did not induce cell death but suppressed subsequent migration and cell proliferation and induced senescence. By Western blotting, we observed a rapid and sustained increase in p21 levels, previously shown to be activated by p53 in response to double strand break, and mediating senescence in human cells. Current experiments focus on the mechanism of sustained p21 upregulation and its role in reduced migration. Inhibition of endothelial cell migration and proliferation by radiation may explain reduced angiogenesis in tumors growing in previously irradiated fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare.