997 resultados para antioxidant power
Resumo:
Nowadays the energy efficiency has become one of the most concerned topics. Compressors are the equipment, which is very common in industry. Moreover, they tend to operate during long cycles and therefore even small decrease in power consumption can significantly reduce electricity costs during the year. And therefore it is important to investigate ways of increasing the energy efficiency of the compressors. In the thesis rotary screw compressor alongside with different control approaches is described. Simulation models for various control types of rotary screw compressor are developed. Analysis of laboratory equipment is conducted and results are compared with simulation. Suggestions of the real laboratory equipment improvement are given.
Resumo:
The global interest towards renewable energy production such as wind and solar energy is increasing, which in turn calls for new energy storage concepts due to the larger share of intermittent energy production. Power-to-gas solutions can be utilized to convert surplus electricity to chemical energy which can be stored for extended periods of time. The energy storage concept explored in this thesis is an integrated energy storage tank connected to an oxy-fuel combustion plant. Using this approach, flue gases from the plant could be fed directly into the storage tank and later converted into synthetic natural gas by utilizing electrolysis-methanation route. This work utilizes computational fluid dynamics to model the desublimation of carbon dioxide inside a storage tank containing cryogenic liquid, such as liquefied natural gas. Numerical modelling enables the evaluation of the transient flow patterns caused by the desublimation, as well as general fluid behaviour inside the tank. Based on simulations the stability of the cryogenic storage and the magnitude of the key parameters can be evaluated.
Resumo:
Increased heart rate variability (HRV) and high-frequency content of the terminal region of the ventricular activation of signal-averaged ECG (SAECG) have been reported in athletes. The present study investigates HRV and SAECG parameters as predictors of maximal aerobic power (VO2max) in athletes. HRV, SAECG and VO2max were determined in 18 high-performance long-distance (25 ± 6 years; 17 males) runners 24 h after a training session. Clinical visits, ECG and VO2max determination were scheduled for all athletes during thew training period. A group of 18 untrained healthy volunteers matched for age, gender, and body surface area was included as controls. SAECG was acquired in the resting supine position for 15 min and processed to extract average RR interval (Mean-RR) and root mean squared standard deviation (RMSSD) of the difference of two consecutive normal RR intervals. SAECG variables analyzed in the vector magnitude with 40-250 Hz band-pass bi-directional filtering were: total and 40-µV terminal (LAS40) duration of ventricular activation, RMS voltage of total (RMST) and of the 40-ms terminal region of ventricular activation. Linear and multivariate stepwise logistic regressions oriented by inter-group comparisons were adjusted in significant variables in order to predict VO2max, with a P < 0.05 considered to be significant. VO2max correlated significantly (P < 0.05) with RMST (r = 0.77), Mean-RR (r = 0.62), RMSSD (r = 0.47), and LAS40 (r = -0.39). RMST was the independent predictor of VO2max. In athletes, HRV and high-frequency components of the SAECG correlate with VO2max and the high-frequency content of SAECG is an independent predictor of VO2max.
Resumo:
The effects of H2O2 were evaluated in the estuarine worm Laeonereis acuta (Polychaeta, Nereididae) collected at the Patos Lagoon estuary (Southern Brazil) and maintained in the laboratory under controlled salinity (10 psu diluted seawater) and temperature (20°C). The worms were exposed to H2O2 (10 and 50 µM) for 4, 7, and 10 days and the following variables were determined: oxygen consumption, catalase (CAT) and glutathione peroxidase activity in both the supernatant and pellet fractions of whole body homogenates. The concentrations of non-protein sulfhydryl and lipid peroxides (LPO) were also measured. The oxygen consumption response was biphasic, decreasing after 4 days and increasing after 7 and 10 days of exposure to 50 µM H2O2 (P < 0.05). At the same H2O2 concentration, CAT activity was lower (P < 0.05) in the pellet fraction of worms exposed for 10 days compared to control. Non-protein sulfhydryl concentration and glutathione peroxidase activity were not affected by H2O2 exposure. After 10 days, LPO levels were higher (P < 0.05) in worms exposed to 50 µM H2O2 compared to control. The reduction in the antioxidant defense was paralleled by oxidative stress as indicated by higher LPO values (441% compared to control). The reduction of CAT activity in the pellet fraction may be related to protein oxidation. These results, taken together with previous findings, suggest that the worms were not able to cope with this H2O2 concentration.
Resumo:
The purpose of this thesis is to find development areas for site operations in power plant construction projects delivered by Wärtsilä. The inspected operations are subcontractor management, site material management and work scheduling. The contractor's role in EPC project is to respond for engineering, procurement, and construction supervision. Geographical and cultural differences brings challenges for finding development areas as Wärtsilä delivers projects world-wide. Searching for development area is mainly made with survey, which answers were collected from the target company's site personnel. Based on the results, with good planning and preparation various problems would be avoided. An external view for the thesis was collected by an expert interview, which was held to three expe-rienced construction operating executives. Interviewees believed that with the se-lection of right site personnel and clearly defined areas of responsibility will great-ly affect the outcome of the project. Some of the theory has been collected from areas, which have helped to under-stand the inspected operations on site. Improving competence knowledge has been important due to the broad scope of work and the author’s inexperience of the topic. Also generally effective practices from construction projects has been col-lected to the theory part. Functionality of general practices have been reflected together with the results of empirically collected data for Wärtsilä's projects. As a result, a model was generated where development proposals and the benefits from new procedures were presented.
Resumo:
This work focuses on the 159.5 kW solar photovoltaic power plant project installed at the Lappeenranta University of Technology in 2013 as an example of what a solar plant project could be in Finland. The project consists of a two row carport and a flat roof installation on the roof of the university laboratories. The purpose of this project is not only its obvious energy savings potential but also to serve as research and teaching laboratory tool. By 2013, there were not many large scale solar power plants in Finland. For this reason, the installation and data experience from the solar power plant at LUT has brought valuable information for similar projects in northern countries. This work includes a first part for the design and acquisition of the project to continue explaining about the components and their installation. At the end, energy produced by this solar power plant is studied and calculated to find out some relevant economical results. For this, the radiation arriving to southern Finland, the losses of the system in cold weather and the impact of snow among other aspects are taken into account.
Resumo:
A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.
Resumo:
The aim of this study was to evaluate the role of oxidative damage in pancreatitis-induced hepatic injury. Thirty-five rats were divided into five groups (each of 7 rats): control, cerulein (100 µg/kg body weight), cerulein and pentoxifylline (12 mg/kg body weight), cerulein plus L-NAME (10 mg/kg body weight) and cerulein plus L-arginine (160 mg/kg body weight). The degree of hepatic cell degeneration differed significantly between groups. Mean malondialdehyde levels were 7.00 ± 2.29, 20.89 ± 10.13, 11.52 ± 4.60, 18.69 ± 8.56, and 8.58 ± 3.68 nmol/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Mean catalase activity was 3.20 ± 0.83, 1.09 ± 0.35, 2.05 ± 0.91, 1.70 ± 0.60, and 2.85 ± 0.47 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively, and mean glutathione peroxidase activity was 0.72 ± 0.25, 0.33 ± 0.09, 0.37 ± 0.04, 0.34 ± 0.07 and 0.42 ± 0.1 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Cerulein-induced liver damage was accompanied by a significant increase in tissue malondialdehyde levels (P < 0.05) and a significant decrease in catalase (P < 0.05) and GPx activities (P < 0.05). L-arginine and pentoxifylline, but not L-NAME, protected against this damage. Oxidative injury plays an important role not only in the pathogenesis of AP but also in pancreatitis-induced hepatic damage.
Resumo:
The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.
Resumo:
Resistance training increases muscle strength in older adults, decreasing the effort necessary for executing physical tasks, and reducing cardiovascular load during exercise. This hypothesis has been confirmed during strength-based activities, but not during aerobic-based activities. This study determined whether different resistance training regimens, strength training (ST, constant movement velocity) or power training (PT, concentric phase performed as fast as possible) can blunt the increase in cardiovascular load during an aerobic stimulus. Older adults (63.9 ± 0.7 years) were randomly allocated to: control (N = 11), ST (N = 13, twice a week, 70-90% 1-RM) and PT (N = 15, twice a week, 30-50% 1-RM) groups. Before and after 16 weeks, oxygen uptake (VO2), systolic blood pressure (SBP), heart rate (HR), and rate pressure product (RPP) were measured during a maximal treadmill test. Resting SBP and RPP were similarly reduced in all groups (combined data = -5.7 ± 1.2 and -5.0 ± 1.7%, respectively, P < 0.05). Maximal SBP, HR and RPP did not change. The increase in measured VO2, HR and RPP for the increment in estimated VO2 (absolute load) decreased similarly in all groups (combined data = -9.1 ± 2.6, -14.1 ± 3.9, -14.2 ± 3.0%, respectively, P < 0.05), while the increments in the cardiovascular variables for the increase in measured VO2 did not change. In elderly subjects, ST and PT did not blunt submaximal or maximal HR, SBP and RPP increases during the maximal exercise test, showing that they did not reduce cardiovascular stress during aerobic tasks.
Resumo:
The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µM and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µM. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.
Resumo:
Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr-/-, C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.
Resumo:
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellataroot extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.
Resumo:
Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.
Resumo:
This study aimed to analyze the agreement between measurements of unloaded oxygen uptake and peak oxygen uptake based on equations proposed by Wasserman and on real measurements directly obtained with the ergospirometry system. We performed an incremental cardiopulmonary exercise test (CPET), which was applied to two groups of sedentary male subjects: one apparently healthy group (HG, n=12) and the other had stable coronary artery disease (n=16). The mean age in the HG was 47±4 years and that in the coronary artery disease group (CG) was 57±8 years. Both groups performed CPET on a cycle ergometer with a ramp-type protocol at an intensity that was calculated according to the Wasserman equation. In the HG, there was no significant difference between measurements predicted by the formula and real measurements obtained in CPET in the unloaded condition. However, at peak effort, a significant difference was observed between oxygen uptake (V˙O2)peak(predicted)and V˙O2peak(real)(nonparametric Wilcoxon test). In the CG, there was a significant difference of 116.26 mL/min between the predicted values by the formula and the real values obtained in the unloaded condition. A significant difference in peak effort was found, where V˙O2peak(real)was 40% lower than V˙O2peak(predicted)(nonparametric Wilcoxon test). There was no agreement between the real and predicted measurements as analyzed by Lin’s coefficient or the Bland and Altman model. The Wasserman formula does not appear to be appropriate for prediction of functional capacity of volunteers. Therefore, this formula cannot precisely predict the increase in power in incremental CPET on a cycle ergometer.