918 resultados para angular speed
Resumo:
A correlational study was designed to examine the general processing speed and orthographic processing speed accounts of the association between continuous naming speed and word reading skill in children from fourth to sixth grade. Children were given two tests of each of the following constructs: word reading skill, alphanumeric symbol naming speed, nonsymbol naming speed, alphanumeric processing speed, and nonsymbol processing speed. Results were not completely consistent with either the general processing speed or the orthographic processing speed accounts. Although an alphanumeric symbol processing efficiency component is clearly involved, it is argued that the particularly strong association between naming speed and word reading also reflects the efficiency of phonological processing in children of this age.
Resumo:
We explore the calculation of unimolecular bound states and resonances for deep-well species at large angular momentum using a Chebychev filter diagonalization scheme incorporating doubling of the autocorrelation function as presented recently by Neumaier and Mandelshtam [Phys. Rev. Lett. 86, 5031 (2001)]. The method has been employed to compute the challenging J=20 bound and resonance states for the HO2 system. The methodology has firstly been tested for J=2 in comparison with previous calculations, and then extended to J=20 using a parallel computing strategy. The quantum J-specific unimolecular dissociation rates for HO2-> H+O-2 in the energy range from 2.114 to 2.596 eV have been reported for the first time, and comparisons with the results of Troe and co-workers [J. Chem. Phys. 113, 11019 (2000) Phys. Chem. Chem. Phys. 2, 631 (2000)] from statistical adiabatic channel method/classical trajectory calculations have been made. For most of the energies, the reported statistical adiabatic channel method/classical trajectory rate constants agree well with the average of the fluctuating quantum-mechanical rates. Near the dissociation threshold, quantum rates fluctuate more severely, but their average is still in agreement with the statistical adiabatic channel method/classical trajectory results.
Resumo:
There is ongoing debate whether the efficiency of local cognitive processes leads to global cognitive ability or whether global ability feeds the efficiency of basic processes. A prominent example is the well-replicated association between inspection time (IT), a measure of perceptual discrimination speed, and intelligence (IQ), where it is not known whether increased speed is a cause or consequence of high IQ. We investigated the direction of causation between IT and IQ in 2012 genetically related subjects from Australia and The Netherlands. Models in which the reliable variance of each observed variable was specified as a latent trait showed IT correlations of -0.44 and -0.33 with respective Performance and Verbal IQ; heritabilities were 57% (IT), 83% (PIQ) and 77% (VIQ). Directional causation models provided poor fits to the data, with covariation best explained by pleiotropic genes (influencing variation in both IT and IQ). This finding of a common genetic factor provides a better target for identifying genes involved in cognition than genes which are unique to specific traits.
Resumo:
This study examined the role of global processing speed in mediating age increases in auditory memory span in 5- to 13-year-olds. Children were tested on measures of memory span, processing speed, single-word speech rate, phonological sensitivity, and vocabulary. Structural equation modeling supported a model in which age-associated increases in processing speed predicted the availability of long-term memory phonological representations for redintegration processes. The availability of long-term phonological representations, in turn, explained variance in memory span. Maximum speech rate did not predict independent variance in memory span. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.
Resumo:
Purpose: This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed. Method: Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km(.)h(-1), and 800 in at 6.5 km(.)h(-1) on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI. and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, brisk 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined. Results: Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI. and 0.99 with individual calibration for a specific MTI. The SEE (mean +/- SD) was 0.58 +/- 0.30 km(.)h(-1) without individual calibration, 0.19 +/- 0.09 km h(-1) with individual calibration for the average MTI monitor, and 0.16 +/- 0.08 km(.)h(-1) with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the brisk 3-km walk was 0.06 +/- 0.25 km(.)h(-1) using individual calibration and 0.28 +/- 0.63 km(.)h(-1) without individual calibration (for specific accelerometers). Conclusion: MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.
Resumo:
Selleri's arguments that a consideration of noninertial reference frames in the framework of special relativity identify absolute simultaneity as being Nature's choice of synchronization are considered. In the case of rectilinearly accelerating rockets, it is argued by considering two rockets which maintain a fixed proper separation rather than a fixed separation relative to the inertial frame in which they start from rest, that what seems the most natural choice for a simultaneity convention is problem-dependent and that Einstein's definition is the most natural (though still conventional) choice in this case. In addition, the supposed problems special relativity has with treating a rotating disk, namely how a pulse of light traveling around the circumference of the disk can have a local speed of light equal to c everywhere but a global speed not equal to c, and how coordinate transformations to the disk can give the Lorentz transformations in the limit of large disk radius but small angular velocity, are addressed. It is shown that the theory of Fermi frames solves both of these problems. It is also argued that the question of defining simultaneity relative to a uniformly rotating disk does riot need to be resolved in order to resolve Ehrenfest's paradox.
Resumo:
It has been demonstrated, using abstract psychophysical stimuli, that speeds appear slower when contrast is reduced under certain conditions. Does this effect have any real life consequences? One previous study has found, using a low fidelity driving simulator, that participants perceived vehicle speeds to be slower in foggy conditions. We replicated this finding with a more realistic video-based simulator using the Method of Constant Stimuli. We also found that lowering contrast reduced participants’ ability to discriminate speeds. We argue that these reduced contrast effects could partly explain the higher crash rate of drivers with cataracts (this is a substantial societal problem and the crash relationship variance can be accounted for by reduced contrast). Note that even if people with cataracts can calibrate for the shift in their perception of speed using their speedometers (given that cataracts are experienced over long periods), they may still have an increased chance of making errors in speed estimation due to poor speed discrimination. This could result in individuals misjudging vehicle trajectories and thereby inflating their crash risk. We propose interventions that may help address this problem.