970 resultados para analog-digital conversion (ADC)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced bus-clamping switching sequences, which employ an active vector twice in a subcycle, are used to reduce line current distortion and switching loss in a space vector modulated voltage source converter. This study evaluates minimum switching loss pulse width modulation (MSLPWM), which is a combination of such sequences, for static reactive power compensator (STATCOM) application. It is shown that MSLPWM results in a significant reduction in device loss over conventional space vector pulse width modulation. Experimental verification is presented at different power levels of up to 150 kVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a `footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by similar to 50% in generator potentials, to similar to 3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorescence intensity of unilamellar DOPC vesicles with embedded Tb3+-cholate complexes depends on the concentration of dihydroxynaphthalene (DHN) as sensitizer in solution. This was used to monitor the enzymatic conversion of DHN esters or DHN glucosides by enzymes in aqueous buffered solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manipulation of matter at the nanoscale is a way forward to move beyond our current choices in electrochemical energy storage and conversion technologies with promise of higher efficiency, environmental benignity, and cost-effectiveness. Electrochemical processes being basically surface phenomena, tailored multifunctional nanoarchitecturing can lead to improvements in terms of electronic and ionic conductivities, diffusion and mass transport, and electron transfer and electrocatalysis. The nanoscale is also a domain in which queer properties surface: those associated with conversion electrodes, ceramic particles enhancing the conductivity of polymer electrolytes, and transition metal oxide powders catalyzing fuel cell reactions, to cite a few. Although this review attempts to present a bird's eye view of the vast literature that has accumulated in this rather infant field, it also lists a few representative studies that establish the beneficial effects of going `nano'. Investigations on nanostructuring and use of nanoparticles and nanoarchitectures related to lithium-ion batteries (active materials and electrolytes), supercapacitors (electrical double-layer capacitors, supercapacitors based on pseudo-capacitance, and hybrid supercapacitors), and fuel cells (electrocatalysts, membranes and hydrogen storage materials) are highlighted. (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemically-induced nanorod to quantum dot transition is reported in ZnO. This transition is achieved using co-surfactants in a marginally polar solvent in chimie douce (soft chemical) conditions. This is different from the physical instability driven transitions reported so far in metal nanowires and polymers. We propose a suitable mechanism for the observed phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neonatal temperature monitoring system operating in subthreshold regime that utilizes time mode signal processing is presented. Resistance deviations in a thermistor due to temperature variations are converted to delay variations that are subsequently quantized by a Delay measurement unit (DMU). The DMU does away with the need for any analog circuitry and is synthesizable entirely from digital logic. An FPGA implementation of the system demonstrates the viability of employing time mode signal processing, and measured results show that temperature resolution better than 0.1 degrees C can be achieved using this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicrometer CMOS technologies. Chip prototype of the proposed frequency multiplication-based 2.4-GHz binary frequency-shift-keying (BFSK)/amplitude shift keying (ASK) transmitter (TX) was fabricated in 0.13-mu m CMOS technology. The TX achieves maximum data rates of 3 and 20 Mb/s for BFSK and ASK modulations, respectively, consuming a 14-mA current from 1.3 V supply voltage. The corresponding energy efficiencies of the TX are 3.6 nJ/bit for BFSK and 0.91 nJ/bit for ASK modulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimizing energy consumption is of utmost importance in an energy starved system with relaxed performance requirements. This brief presents a digital energy sensing method that requires neither a constant voltage reference nor a time reference. An energy minimizing loop uses this to find the minimum energy point and sets the supply voltage between 0.2 and 0.5 V. Energy savings up to 1275% over existing minimum energy tracking techniques in the literature is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study follows an approach to estimate phytomass using recent techniques of remote sensing and digital photogrammetry. It involved tree inventory of forest plantations in Bhakra forest range of Nainital district. Panchromatic stereo dataset of Cartosat-1 was evaluated for mean stand height retrieval. Texture analysis and tree-tops detection analyses were done on Quick-Bird PAN data. The composite texture image of mean, variance and contrast with a 5x5 pixel window was found best to separate tree crowns for assessment of crown areas. Tree tops count obtained by local maxima filtering was found to be 83.4 % efficient with an RMSE+/-13 for 35 sample plots. The predicted phytomass ranged from 27.01 to 35.08 t/ha in the case of Eucalyptus sp. while in the case of Tectona grandis from 26.52 to 156 t/ha. The correlation between observed and predicted phytomass in Eucalyptus sp. was 0.468 with an RMSE of 5.12. However, the phytomass predicted in Tectona grandis was fairly strong with R-2=0.65 and RMSE of 9.89 as there was no undergrowth and the crowns were clearly visible. Results of the study show the potential of Cartosat-1 derived DSM and Quick-Bird texture image for the estimation of stand height, stem diameter, tree count and phytomass of important timber species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the synthesis of TiO2/BiFeO3 nano-heterostnicture (NH) arrays by anchoring BiFeO3 (BFO) particles on on TiO2 nanotube surface and investigate their pseudocapacitive and photoelectrochemical properties considering their applications in green energy fields. The unique TiO2/BFO NHs have been demonstrated both as energy conversion and storage materials. The capacitive behavior of the NHs has been found to be significantly higher than that of the pristine TiO2 NTs, which is mainly due to the anchoring of redox active BFO nanoparticles. A specific capacitance of about 440 F g(-1) has been achieved for this NHs at a current density of 1.1 A g(-1) with similar to 80% capacity retention at a current density of 2.5 A g(-1). The NHs also exhibit high energy and power performance (energy density of 46.5 Wh kg(-1) and power density of 1.2 kW kg(-1) at a current density of 2.5 A g(-1)) with moderate cycling stability (92% capacity retention after 1200 cycles). Photoelectrochemical investigation reveals that the photocurrent density of the NHs is almost 480% higher than the corresponding dark current and it shows significantly improved photoswitching performance as compared to pure TiO2 nanotubes, which has been demonstrated based the interfacial type-II band alignment between TiO2 and BFO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fringe tracking and fringe order assignment have become the central topics of current research in digital photoelasticity. Isotropic points (IPs) appearing in low fringe order zones are often either overlooked or entirely missed in conventional as well as digital photoelasticity. We aim to highlight image processing for characterizing IPs in an isochromatic fringe field. By resorting to a global analytical solution of a circular disk, sensitivity of IPs to small changes in far-field loading on the disk is highlighted. A local theory supplements the global closed-form solutions of three-, four-, and six-point loading configurations of circular disk. The local theoretical concepts developed in this paper are demonstrated through digital image analysis of isochromatics in circular disks subjected to three-and four-point loads. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.