939 resultados para ammonia removal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Austausch von Spurengasen und Aerosolpartikeln zwischenAtmosphäre und Biosphäre spielt eine wichtige Rolle in derAtmosphärenphysik und -chemie. Wälder repräsentieren sowohleine signifikante Senke als auch Quelle für Spurengase undPartikel und tragen somit maßgeblich zu derenatmosphärischem Budget bei. Strahlungsnebel beeinflußt durchAufnahme, Entfernen und Prozessieren von Aerosolpartikelnund löslichen Spurengasen deren Konzentrationen in derGasphase. In dieser Arbeit wird erstmalig ein Modell präsentiert,welches die Simulation des Austausches zwischen Atmosphäreund Biosphäre unter Berücksichtigung der dynamischenWechselwirkung zwischen Strahlungsnebel, Blattflächenwasserund Mehrphasenchemie ermöglicht. Numerische Fallstudien mitfolgenden Schwerpunkten werden präsentiert: - Einfluß von Vegetation und Blattflächenwasser auf diezeitlichen und räumlichen Schwankungen derGrößenabhängigkeit der Flüssigphasenkonzentrationen inNebeltropfen, - Einfluß von Blattflächenwasser auf dieTrockendepositionsflüsse von Ammoniak im Wald - Simulationenwurden mit einem neuen dynamischen Depositionsmodelldurchgeführt und mit dem Widerstandsansatz verglichen -, - Einfluß von physikalischen und chemischen Prozessen aufdie Reduktion von NO- und Isoprenemissionen aus demWaldbestand verglichen mit den primären Emissionen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a multi physics simulation of an innovative safety system for light water nuclear reactor is performed, with the aim to increase the reliability of its main decay heat removal system. The system studied, denoted by the acronym PERSEO (in Pool Energy Removal System for Emergency Operation) is able to remove the decay power from the primary side of the light water nuclear reactor through a heat suppression pool. The experimental facility, located at SIET laboratories (PIACENZA), is an evolution of the Thermal Valve concept where the triggering valve is installed liquid side, on a line connecting two pools at the bottom. During the normal operation, the valve is closed, while in emergency conditions it opens, the heat exchanger is flooded with consequent heat transfer from the primary side to the pool side. In order to verify the correct system behavior during long term accidental transient, two main experimental PERSEO tests are analyzed. For this purpose, a coupling between the mono dimensional system code CATHARE, which reproduces the system scale behavior, with a three-dimensional CFD code NEPTUNE CFD, allowing a full investigation of the pools and the injector, is implemented. The coupling between the two codes is realized through the boundary conditions. In a first analysis, the facility is simulated by the system code CATHARE V2.5 to validate the results with the experimental data. The comparison of the numerical results obtained shows a different void distribution during the boiling conditions inside the heat suppression pool for the two cases of single nodalization and three volume nodalization scheme of the pool. Finaly, to improve the investigation capability of the void distribution inside the pool and the temperature stratification phenomena below the injector, a two and three dimensional CFD models with a simplified geometry of the system are adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, we analyze the effectiveness of an organosilane compound, 3-mercapto-propyl-tri-methoxy-silane (abbreviated PropS-SH), in the corrosion protection of fire-gilded bronzes. Firstly, the coating was applied on as-gilded bronze. Subsequently, it was also applied on pre-patinated bronze, because the substrate on which protective coatings are applied in real conservation interventions are corroded artifacts (cleaning procedures never remove all the corrosion products). Aiming to obtain results that simulate the situation of real artifacts, a dropping test that simulates outdoor exposure in runoff conditions (unsheltered areas of monuments) was employed in order to prepatinate the gilded bronze samples, which are the substrate for applying the protective coating. The preparation of the samples by applying the protective coating was performed in collaboration with the Corrosion Studies Centre “Aldo Daccò” from Ferrara University. After the artificial exposure cycles the samples underwent investigations through a variety of spectroscopic methods including SEM, Raman, FIB, AAS and color measurements. In order to evaluate the possible removal of the organosilane coating, protected samples were subjected to laser cleaning tests and characterized by SEM/EDS so as to assess the changes in composition and morphology of the treated surfaces. The laser cleaning treatment was performed at the Institute of Applied Physics “Nello Carrara” (CNR Sesto Fiorentino (FI)). The morphology and chemical composition of the samples was observed before and after the operation in order to obtain information about the fluence and type of laser which are best suited to the removal of this type of coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest of the scientific community towards organic pollutants in freshwater streams is fairly recent. During the past 50 years, thousands of chemicals have been synthesized and released into the general environment. Nowadays their occurrence and effects on several organism, invertebrates, fish, birds, reptiles and also humans are well documented. Because of their action, some of these chemicals have been defined as Endocrine Disrupters Compounds (EDCs) and the public health implications of these EDCs have been the subject of scientific debate. Most interestingly, among those that were noticed to have some influence and effects on the endocrine system were the estrone, the 17β-estradiol, the 17α-estradiol, the estriol, the 17α-ethinylestradiol, the testosterone and the progesterone. This project focused its attention on the 17β-estradiol. Estradiol, or more precisely, 17β-estradiol (also commonly referred to as E2) is a human sex hormone. It belongs to the class of steroid hormones. In spite of the effort to remove these substances from the effluents, the actual wastewater treatment plants are not able to degrade or inactivate these organic compounds that are continually poured in the ecosystem. Through this work a new system for the wastewater treatment was tested, to assess the decrease of the estradiol in the water. It involved the action of Chlorella vulgaris, a fresh water green microalga belonging to the family of the Chlorellaceae. This microorganism was selected for its adaptability and for its photosynthetic efficiency. To detect the decrease of the target compound in the water a CALUX bioassay analysis was chosen. Three different experiments were carried on to pursue the aim of the project. By analysing their results several aspects emerged. It was assessed the presence of EDCs inside the water used to prepare the culture media. C. vulgaris, under controlled conditions, could be efficient for this purpose, although further researches are essential to deepen the knowledge of this complex phenomenon. Ultimately by assessing the toxicity of the effluent against C. vulgaris, it was clear that at determined concentrations, it could affect the normal growth rate of this microorganism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die biologische Stickstofffixierung durch Molybdän-haltige Nitrogenasen sowie die Erforschung des zugrundeliegenden komplexen Mechanismus (N2-Aktivierung an Metall-Zentren, 6-fache Protonierung und Reduktion, N–N Bindungsspaltung unter Bildung von Ammoniak) ist von erheblichem Interesse. Insbesondere Molybdän-Komplexe wurden bereits erfolgreich als Modellverbindungen für die Untersuchung elementarer Einzelschritte der N2-Aktivierung eingesetzt. Durch die Verwendung von Triamidoamin-Liganden ist es Schrock et al. sogar gelungen mehrere Katalysezyklen zu durchlaufen und einen Mechanismus zu formulieren. Trotz der sterisch anspruchsvollen Substituenten in den Schrock-Komplexen ist die Umsatzrate dieses homogenen Katalysators, aufgrund Komplex-Deaktivierung infolge intermolekularer Reaktionen wie Dimerisierung und Disproportionierung, limitiert. In der vorliegenden Arbeit wurden einige dieser Herausforderungen angegangen und die aktiven Spezies auf einer Festphase immobilisiert, um intermolekulare Reaktionen durch räumliche Isolierung der Komplexe zu unterdrücken.rnEin Polymer-verankertes Analogon des Schrock Nitrido-Molybdän(VI)-Komplexes wurde auf einem neuen Reaktionsweg synthetisiert. Dieser beinhaltet nur einen einzigen Reaktionsschritt, um die funktionelle Gruppe „MoN“ einzuführen. Protonierung des immobilisierten Nitrido-Molybdän(VI)-Komplexes LMoVIN (L = Polymer-verankerter Triamidoamin-Ligand) mit 2,6-Lutidinium liefert den entsprechenden Imido-Molybdän(VI)-Komplex. Durch anschließende Ein-Elektronen-Reduktion mit Cobaltocen wird der Polymer-angebundene Imido-Molybdän(V)-Komplex erhalten, bewiesen durch EPR-Spektroskopie (g1,2,3 = 1.989, 1.929, 1.902). Durch die Immobilisierung und die effektive räumliche Separation der Reaktionszentren auf der Festphase werden bimolekulare Nebenreaktionen, die oft in homogenen Systemen auftreten, unterdrückt. Dies ermöglicht zum ersten Mal die Darstellung des Imido-Molybdän(V)-Intermediates des Schrock-Zyklus.rnEPR-Spektren des als Spin-Label eingeführten immobilisierten Nitrato-Kupfer(II)-Komplexes wurden unter verschiedenen Bedingungen (Lösungsmittel, Temperatur) aufgenommen, wobei sich eine starke Abhängigkeit zwischen der Zugänglichkeit und Reaktivität der immobilisierten Reaktionszentren und der Art des Lösungsmittels zeigte. Somit wurde die Reaktivität von LMoVIN gegenüber Protonen und Elektronen, welches zur Bildung von NH3 führt, unter Verwendung verschiedener Lösungsmittel untersucht und optimiert. Innerhalb des kugelförmigen Polymers verläuft die Protonierung und Reduktion von LMoVIN stufenweise. Aktive Zentren, die sich an der „äußeren Schale“ des Polymers befinden, sind gut zugänglich und reagieren schnell nach H+/e− Zugabe. Aktive Zentren im „Inneren des Polymers“ hingegen sind schlechter zugänglich und zeigen langsame diffusions-kontrollierte Reaktionen, wobei drei H+/e− Schritte gefolgt von einer Ligandenaustausch-Reaktion erforderlich sind, um NH3 freizusetzen: LMoVIN  LMoVNH  LMoIVNH2  LMoIIINH3 und anschließender Ligandenaustausch führt zur Freisetzung von NH3.rnIn einem weiteren Projekt wurde der Bis(ddpd)-Kupfer(II)-Komplex EPR-spektroskopisch in Hinblick auf Jahn−Teller-Verzerrung und -Dynamik untersucht. Dabei wurden die EPR-Spektren bei variabler Temperatur (70−293 K) aufgenommen. Im Festkörperspektrum bei T < 100 K erscheint der Kupfer(II)-Komplex als gestreckter Oktaeder, wohingegen das EPR-Spektrum bei höheren Temperaturen g-Werte aufzeigt, die einer pseudo-gestauchten oktaedrischen Kupfer(II)-Spezies zuzuordnen sind. Diese Tatsache wird einem intramolekularen dynamischen Jahn−Teller Phänomen zugeschrieben, welcher bei 100 K eingefroren wird.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To identify the rates and reasons for plate removal (PR) among patients treated for facial fractures. MATERIALS AND METHODS: A retrospective review of files of 238 patients. RESULTS: Forty-eight patients (20.2%) had plates removed. The reason for removal was objective in 33.3% and subjective in 29.2%. The most common subjective reason was cold sensitivity, and the most common objective reason was wound dehiscence/infection. Women had PR for subjective reasons more often than men (p=0.018). Removal was performed more often for subjective reasons after zygomatico-orbital fractures than after mandibular fractures (p=0.002). Plates inserted in the mandible from an intraoral approach were removed more frequently than extraorally inserted mandibular plates, intraorally inserted maxillary plates, and extraorally inserted plates in other locations (p<0.001). Orbital rim plates had a higher risk of being removed than maxillary or frontal bone plates (p=0.02). CONCLUSIONS: Subjective discomfort is a notable reason for PR among Finnish patients, suggesting that the cold climate has an influence on the need for removal. Patients receiving mandibular osteosynthesis with miniplates from an intraoral approach are at risk of hardware removal because of wound dehiscence/infection and loose/broken hardware, reminding us that more rigid fixation devices should not be forgotten despite the widespread use of miniplates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removal of miniplates is a controversial topic in oral and maxillofacial surgery. Originally, miniplates were designed to be removed on completion of bone healing. The introduction of low profile titanium miniplates has led to the routine removal of miniplates becoming comparatively rare in many parts of the world. Few studies have investigated the reasons for non-routine removal of miniplates and the factors that affect osteosynthesis after osteotomy in large numbers of patients. The aim of the present study was to investigate complications related to osteosynthesis after bilateral sagittal split osteotomy (BSSO) in a large number (n=153) of patients. In addition to the rates of removal, emphasis was placed on investigating the reasons and risk factors associated with symptomatic miniplate removal. The rate of plate removal per patient was 18.6%, the corresponding rate per plate being 18.2%. Reasons for plate removal included plate-related complications in 16 patients and subjective discomfort in 13 patients. Half of the plates were removed during the first postoperative year. Smoking was the only significant predictor for plate removal. Patients undergoing orthognathic surgery should be screened with regard to smoking and encouraged and assisted to cease smoking, at least perioperatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared the efficiency of air abrasion on enamel caries with selective enamel powder (SEP) or with alumina powder and a negative and positive control group. Ninety-three extracted molars with non-cavitated incipient enamel lesions were selected. After embedding the roots in resin, each lesion was sectioned perpendicular to the surface and photographed. Each lesion was classified microscopically as having or not having dentin involvement. The lesions were distributed into four groups with an equal number of enamel caries with or without dentin involvement. Each group was treated differently: Group 1 had SEP abrasion, Group 2 had alumina abrasion, Group 3 had sodium bicarbonate abrasion (negative control) and Group 4 had bur treatment (positive control). The surface was rephotographed after treatment. Superimposition of the photographs identified areas of "correct-excavation," "under-excavation" and "over-excavation." There were no statistical differences between lesions treated with or without dentin involvement for Groups 2 through 4. However, in the SEP group, all measured areas were significantly influenced by dentin involvement. In pairwise comparisons, no statistical differences were found between the alumina and bur groups. The SEP group, however, showed statistically significant differences for each area compared to the alumina group in enamel caries without dentin involvement. SEP performed as well as alumina and bur in lesions with dentin involvement. SEP is different in its ablative properties toward caries with dentin involvement or no dentin involvement. In terms of dental treatment, SEP seems to have a diagnostic potential for enamel lesions before operative intervention in patients with high caries risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinically, the displacement of intravertebral fat into the circulation during vertebroplasty is reported to lead to problems in elderly patients and can represent a serious complication, especially when multiple levels have to be treated. An in vitro study has shown the feasibility of removing intravertebral fat by pulsed jet-lavage prior to vertebroplasty, potentially reducing the embolization of bone marrow fat from the vertebral bodies and alleviating the cardiovascular changes elicited by pulmonary fat embolism. In this in vivo study, percutaneous vertebroplasty using polymethylmethacrylate (PMMA) was performed in three lumbar vertebrae of 11 sheep. In six sheep (lavage group), pulsed jet-lavage was performed prior to injection of PMMA compared to the control group of five sheep receiving only PMMA vertebroplasty. Invasive recording of blood pressures was performed continuously until 60 min after the last injection. Cardiac output and arterial blood gas parameters were measured at selected time points. Post mortem, the injected cement volume was measured using CT and lung biopsies were processed for assessment of intravascular fat. Pulsed jet-lavage was feasible in the in vivo setting. In the control group, the injection of PMMA resulted in pulmonary fat embolism and a sudden and significant increase in mean pulmonary arterial pressure. Pulsed jet-lavage prevented any cardiovascular changes and significantly reduced the severity of bone marrow fat embolization. Even though significantly more cement had been injected into the lavaged vertebral bodies, significantly fewer intravascular fat emboli were identified in the lung tissue. Pulsed jet-lavage prevented the cardiovascular complications after PMMA vertebroplasty in sheep and alleviated the severity of pulmonary fat embolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and radiologic outcome analysis after petrous bone cholesteatoma (PBC) removal with simultaneous functional reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate whether virtual non-enhanced imaging (VNI) is effective to replace true non-enhanced imaging (TNI) applying iodine removal in intravenous dual-energy CT-cholangiography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.