963 resultados para alkaline proteases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0×10-6-1.0×10-1 M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3 - 5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial enzyme mimetics are a current research interest because natural enzymes bear some serious disadvantages, such as their catalytic activity can be easily inhibited and they can be digested by proteases. A very recently study reported by Yan et al. has proven that Fe3O4 magnetic nanoparticles (MNPs) exhibit an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, though MNPs are usually thought to be biological and chemical inert (Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Y. Nat. Nanotechnol. 2007, 2, 577-583).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorimetric assay based on the unique surface plasmon resonance properties of metallic nanoparticles has received considerable attention in bioassay due to its simplicity, high sensitivity, and low cost. Most of colorimetric methods previously reported employed gold nanoparticles (GNPs) as sensing elements. In this work, we develop a sensitive, selective, simple, and label-free colorimetric assay using unmodified silver nanoparticle (AgNP) probes to detect enzymatic reactions. Enzymatic reactions concerning adenosine triphosphate (ATP) dephosphorylation by calf intestine alkaline phosphatase (CLAP) and peptide phosphorylation by protein kinase A (PKA) were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel bis(amine anhydride) monomers, N,N'-bis(3,4-dicarboxyphenyl)-1,4-phenylenediamine dianhydride I and N,/N'-bis(3,4-dicarboxyphenyl)-1,3-phenylenediamine dianhydride 11, were prepared via palladium-catalyzed amination reaction of 4-chloro-N-methylphthaliniide with 1,4-phenylenediamine or 1,3-phenylenediamine, followed by alkaline hydrolysis of the intermediate bis(amine imide)s and subsequent dehydration of the resulting tetraacids. A series of new poly(amine imide)s were prepared from the synthesized dianhydride monomers with various diamines in NMP via conventional two-step method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional La(OH)(3) nanocrystals with multiform morphologies have been successfully synthesized by a facile bydrothermal process without using any surfactant, catalyst, or template. It can be found that the pH values of the initial solutions and the alkaline sources play a crucial role in controlling the morphologies of the products. The possible formation process of the 1D samples was investigated in detail, Furthermore, the as-prepared Tb3+-doped La(OH)(3) samples show a strong green emission corresponding to D-5(4)-F-7(5) transition of the Tb3+ ions under ultraviolet or low-voltage excitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene sheets functionalized covalently with biocompatible poly-L-lysine (PLL) were first synthesized in all alkaline solution. PLL-functionalized graphene is water-soluble and biocompatible, which makes it a novel material promising for biological applications. Graphene sheets played an important role as connectors to assemble these active amino groups Of Poly-L-lysine, which provided a very biocompatible. environment for further functionalization, such as attaching bioactive molecules. As an example, an amplified biosensor toward H2O2 based on linking peroxidase onto PLL-functionalized graphene was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic corn starch derivatives with a high degree of substitution are prepared in alkaline solution or in mixed media of organic solvent and water with different levels of the cationic reagent, 2,3-epoxypropyltrimethylammonium chloride. The starch cationization yield is investigated, and the results indicate that the degree of substitution (DS) of the samples depends on the reaction conditions and reaction media. The maximum DS values are up to 1.37 in 1,4-dioxane alkali ne-aqueous solution. Meanwhile, the structures of the cationic starch derivatives are characterized by elemental analyses, FTIR spectroscopy, X-ray diffraction, and C-13 NMR spectroscopy, as well as by SEM techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, the reduction of Eu3+ to Eu2+ in solids needs an annealing Process in a reducing atmosphere. in this paper, it is of great interest and importance to find that the reduction of Eu3+ to Eu2+ can be realized in a series of alkaline-earth metal aluminum silicates MAl2Si2O8 (M = Ca, Sr, Ba) just in air condition. The Eu2+-doped MAl2Si2O8 (M = Ca, Sr, Ba) powder samples were prepared in air atmosphere by Pechini-type sol-gel process. It was found that the strong hand emissions of 4f(6)5d(1)-4f(7) from Eu2+ were observed at 417, 404 and 373 nm in air-annealed CaAl2Si2O8, SrAl2Si2O8 and BaAl2Si2O8, respectively, under ultraviolet excitation although the Eu3+ precursors were employed. In addition, under low-voltage electron beam excitation, Eu2+-doped MAl2Si2O8 also shows strong blue or ultraviolet emission corresponding to 4f(6)5d(1)-4f(7) transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-efficiency nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au-Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are employed to characterize the obtained Au-Pt/SiO2. It was found that each hybrid nanosphere is composed of high-density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the AuPt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co2+ and Ni2+, significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba2+ is notably beneficial to the formation of homodimer instead of triplex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H](+) or [M + n + n' matrix + Na](+) (n = the number of cysteine residues, n' = 1, 2, ..., n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances and key strategies in capillary electrophoresis and microchip CE with electrochemical detection (ECD) and electrochemiluminescence (ECL) detection are reviewed. This article consists of four main parts: CE-ECD; microchip CE-ECD; CE-ECL; and microchip CE-ECL. It is expected that ECD and ECL will become powerful tools for CE microchip systems and will lead to the creation of truly disposable devices. The focus is on papers published in the last two years (from 2005 to 2006).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.