993 resultados para Wave filters
Resumo:
We obtained continuous wave mode-locked Nd-GdVO4-KTP laser with a SESAM. This is the first report of CW mode-locked Nd GdVO4-KTP laser with a SESAM to our knowledge. 396mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA
Resumo:
We propose a configuration for suppressing pumps in a broad- and flat-hand tunable nondegenerate four-wave mixing (FWM) wavelength converter. The signal and pumps are coupled into a highly nonlinear photonic crystal fiber symmetrical Sagnac loop. After the FWM wavelength conversion in the loop, the idler is separated from the pumps without a filter. In our experiment, a flat wavelength conversion bandwidth of 36 rim, conversion efficiency of-11 dB., pump-to-signal suppression ratio of 48 dB, and idler-to-pump suppression ratio of 15 dB are achieved.
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Starting from the growth of high-quality 1.3 mu m GaInNAs/GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55 mu m by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5 mu m range GaInNAsSb/GaNAs QWs are quite comparable to the 1.3 mu m QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59 mu m lasing of a GaInNAsSb/GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6 kA/cm(2) with as-cleaved facet mirrors. (c) 2005 American Institute of Physics.
Resumo:
Mode characteristics for two-dimensional equilateral-polygonal microresonators are investigated based on symmetry analysis and finite-difference time-domain numerical simulation. The symmetries of the resonators can be described by the point group C-Nv, accordingly, the confined modes in these resonators can be classified into irreducible representations of the point group C-Nv. Compared with circular resonators, the modes in equilateral-polygonal resonators have different characteristics due to the break of symmetries, such as the split of double-degenerate modes, high field intensity in the center region, and anomalous traveling-wave modes, which should be considered in the designs of the polygonal resonator microlasers or optical add-drop filters.
Resumo:
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.
Resumo:
Equilateral-triangle-resonator (ETR) microlasers with an output waveguide connected to one of the vertices of the ETR are suitable to be a light source for photonic integrated circuits. InP-GaInAsP ETR lasers with side length from 10 to 30 pm and the output-waveguide width of 1 or 2 pm are fabricated using standard photolithography and inductively coupled-plasma etching techniques. Continuous-wave electrically injected 1520-nm ETR laser with 20-mu m sides is realized with the maximum output power 0.17 and 0.067 mW and the threshold current 34 and 43 mA at 290 K and 295 K, respectively.
Resumo:
Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
A high-power continuous wave (cw) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor absorber mirror (SAM). The maximum average output power was 8.1 W and the optic-to-optic conversion efficiency was about 41 %. At the maximum incident pump power, the pulse width was about 8.6 ps and the repetition rate was 130 MHz. Experimental results indicated that this absorber was suitable for high power mode-locked solid-state lasers. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The authors present an analysis of a plasmonic surface-wave splitter, simulated using a two-dimensional finite-difference time-domain technique. A single subwavelength slit is employed as a high-intensity nanoscale excitation source for plasmonic surface waves, resulting in a miniaturized light-surface plasmon coupler. With different surface structures located on the two sides of the slit, the device is able to confine and guide light waves of different wavelengths in opposite directions. Within the 15 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly two to eight times the peak intensity of the incident light, and the propagation length can reach approximately 42 and 16 mu m and at the wavelengths of 0.63 and 1.33 mu m, respectively. (c) 2007 American Institute of Physics.
Resumo:
The time evolution of the ground state wave function of an exciton in an ideal bilayer system is investigated within the framework of the effective-mass approximation. All of the moduli squared of the ground state wave functions evolve with time as cosine functions after an in-plane electric field is applied to the bilayer system. The variation amplitude and period of the modulus squared of the ground state wave function increase with the in-plane electric field F-r for a fixed in-plane relative coordinate r and fixed separation d between the electron and hole layers. Moreover, the variation amplitude and period of the modulus squared of the ground state wave function increase with the separation d for a fixed r and fixed in-plane electric field. Additionally, the modulus squared of the ground state wave function decreases as r increases at a given time t for fixed values of d and F-r. (c) 2007 American Institute of Physics.
Resumo:
Nonlinear optical properties of silicon nanocrystals (nc-Si) embedded in SiO2 films are investigated using time-resolved four-wave mixing technique with a femtosecond laser. the off-resonant third-order nonlinear susceptibility chi((3)) is observed to be 1.3 x 10(-10) esu at 800 nm. The relaxation time of the film is fast as short as 50 fs. The off-resonant nonlinearity is predominantly electronic in origin and enhanced due to quantum confinement.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.