957 resultados para WIRING ENZYMES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellobiohydrolases I and II were purified to homogeneity from culture filtrates of a thermophilic fungus, Chaetomium thermophile var. coprophile, by using a combination of ion-exchange and gel filtration chromatographic procedures. The molecular weights of cellobiohydrolase I and II were estimated to be 60000 and 40000 and the enzymes were found to be glycoproteins containing 17 and 22.8% carbohydrate, respectively. The two forms differed in their amino-acid composition mainly with respect to threonine, alanine, methionine and arginine. Antibodies produced against either form of cellobiohydrolases failed to cross-react with the other. The tryptic maps of the two enzymes were found to be different. The temperature optima for cellobiohydrolase I and II were 75 and 70°C, and they were optimally active at pH 5.8 and 6.4, respectively. Both enzymes were stable at higher temperatures and were able to degrade crystalline cellulosic materals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antigen specific monoclonal antibodies present in crude hybridoma supernatants are normally screened by ELISA on plates coated with the relevant antigen. Screening for inhibitory monoclonals to enzymes would require the evaluation of purified antibodies or antibody containing supernatants for their inhibition of enzyme activity in a separate assay. However, screening for inhibitory antibodies against DNA transacting enzymes such as topoisomerase I (topo I) cannot be done using hybridoma supernatants due to the presence of nucleases in tissue culture media containing foetal calf serum which degrade the DNA substrates upon addition. We have developed a simple and rapid screening procedure for the identification of clones that secrete inhibitory antibodies against mycobacterial topo I using 96 well ELISA microtiter plates. The principle of the method is the selective capture of monoclonal antibodies from crude hybridoma supernatants by topo I that is tethered to the plate through the use of plate-bound polyclonal anti-topo I antibodies. This step allows the nucleases present in the medium to be washed off leaving the inhibitor bound to the tethered enzyme. The inhibitory activity of the captured antibody is assessed by performing an in situ DNA relaxation assay by the addition of supercoiled DNA substrate directly to the microtiter well followed by the analysis of the reaction products by agarose gel electrophoresis. The validity of this method was confirmed by purification of the identified inhibitory antibody and its evaluation in a DNA relaxation assay. Elimination of all enzyme-inhibitory constituents of the culture medium from the well in which the inhibitory antibody is bound to the tethered enzyme may make this method broadly applicable to enzymes such as DNA gyrases, restriction enzymes and other DNA transaction enzymes. Further, the method is simple and avoids the need of prior antibody purification for testing its inhibitory activity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic measurements of enzyme activity indicate that type I pantothenate kinase from Mycobacterium tuberculosis has dual substrate specificity for ATP and GTP, unlike the enzyme from Escherichia coli, which shows a higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes is provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate, (2) GDP and phosphopantothenate, (3) GDP, (4) GDP and pantothenate, (5) AMPPCP, and (6) GMPPCP, reported here, and the structures of the complexes of the two enzymes involving coenzyme A and different adenyl nucleotides reported earlier. The explanation is substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. The structures also provide a rationale for the movement of ligands during the action of the mycobacterial enzyme. Dual specificity of the type exhibited by this enzyme is rare. The change in locations of ligands during action,observed in the case of the M. tuberculosis enzyme, is unusual, so is the striking difference between two homologous enzymes in the geometryof the binding site, locations of ligands, and specificity. Furthermore, the dual specificity of the mycobacterial enzyme appears to have been caused by a biological necessity. (C) 2010 Elsevier Ltd.All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seminal plasma (SP) is the fluid portion of semen, secreted by the epididymides and the accessory glands before and during ejaculation. The stallion s ejaculate is a series of jets that differ in sperm concentration, semen volume and biochemical composition. Before the actual ejaculation, a clear and watery pre-sperm fluid is secreted. The first three jets form the sperm-rich fractions, and contain ¾ of the total number of sperm. The semen volume and sperm concentration in each of the jets decrease towards the end of the ejaculation, and the last jets are sperm-poor fractions with a low sperm concentration. The aims of these studies were to examine the effects of the different SP fractions, and the presence of SP, on sperm survival during storage. Pre-sperm fluid, and semen fractions with a high (sperm-rich) and low (sperm-poor) sperm concentration were collected in five experiments. The levels of selected enzymes, electrolytes and proteins in different SP fractions were determined. These studies also aimed at assessing the individual variation in the levels of the selected SP components and in the effects of SP on spermatozoa. The association between the components of SP and semen quality, sperm longevity, and fertility was examined with a stepwise linear regression analysis. Compared to samples containing SP during storage, centrifugation and the subsequent removal of SP reduced sperm motility parameters during 24 h of cooled storage in all SP fractions, but sperm membrane integrity was not affected. Some of the measured post-thaw motility parameters were also higher in samples containing SP compared to samples stored without SP. In contrast, the proportion of DNA-damaged spermatozoa was greater in the samples stored with SP than those without SP, and this effect was seen in both sperm-rich and sperm-poor fractions. There were no differences in DNA integrity between fractions stored with SP, but the sperm-rich fraction showed less DNA damage than the sperm-poor fraction after SP removal. The differences between fractions in sperm motility after cooled storage were non-significant. The levels of alkaline phosphatase, acid phosphatase and β-glucuronidase were higher in the sperm-rich fractions compared to the sperm-poor fractions, while the concentrations of calcium and magnesium were higher in sperm-poor fractions than in sperm-rich fractions. The concentrations of sodium and chloride were highest in pre-sperm fluid. In the sperm-poor fraction, the level of potassium was associated with the maintenance of sperm motility during storage. The levels of alkaline and acid phosphatase were associated with sperm concentration and the total number of spermatozoa in the ejaculates. None of the measured SP components were correlated to the first cycle pregnancy rate. In summary, the removal of SP improved DNA integrity after cooled storage compared with samples containing SP. There were no differences in the maintenance of sperm motility between the sperm-rich and sperm-poor fractions and whole ejaculates during cooled storage, irrespective of the presence of SP. The lowest rate of DNA damage was found in the sperm-rich fractions stored without SP. In practice, the results presented in this thesis support the use of individual modifications of semen processing techniques for cooled transported semen from subfertile stallions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simplified model of human tear fluid (TF) is a three-layered structure composed of a homogenous gel-like layer of hydrated mucins, an aqueous phase, and a lipid-rich outermost layer found in the tear-air interface. It is assumed that amphiphilic phospholipids are found adjacent to the aqueous-mucin layer and externally to this a layer composed of non-polar lipids face the tear-air interface. The lipid layer prevents evaporation of the TF and protects the eye, but excess accumulation of lipids may lead to drying of the corneal epithelium. Thus the lipid layer must be controlled and maintained by some molecular mechanisms. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. The aim of this thesis was to investigate the presence and molecular mechanisms of lipid transfer proteins in human TF. The purpose was also to study the role of these proteins in the development of dry eye syndrome (DES). The presence of TF PLTP and CETP was studied by western blotting and mass spectrometry. The concentration of these proteins was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. To study the molecular mechanisms involved in PLTP mediated lipid transfer Langmuir monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) was used. Ocular tissue samples were stained with monoclonal antibodies against PLTP to study the secretion route of PLTP. Heparin-Sepharose affinity chromatography was used for PLTP pull-down experiments and co-eluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. To study whether PLTP plays any functional role in TF PLTP-deficient mice were examined. The activity of PLTP was also studied in dry eye patients. PLTP is a component of normal human TF, whereas CETP is not. TF PLTP concentration was about 2-fold higher than that in human plasma. Inactivation of PLTP by heat treatment or immunoinhibition abolished the phospholipid transfer activity in tear fluid. PLTP was found to be secreted from lacrimal glands. PLTP seems to be surface active and is capable of accepting lipid molecules without the presence of lipid-protein complexes. The active movement of radioactively labeled lipids and high activity form of PLTP to acceptor particles suggested a shuttle model of PLTP-mediated lipid transfer. In this model, PLTP physically transports lipids between the donor and acceptor. Protein-protein interaction assays revealed ocular mucins as PLTP interaction partners in TF. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression was demonstrated. Increased tear fluid PLTP activity was observed among human DES patients. These results together suggest a scavenger property of TF PLTP: if the corneal epithelium is contaminated by hydrophobic material, PLTP could remove them and transport them to the superficial layer of the TF or, alternatively, transport them through the naso-lacrimal duct. Thus, PLTP might play an integral role in tear lipid trafficking and in the protection of the corneal epithelium. The increased PLTP activity in human DES patients suggests an ocular surface protective role for this lipid transfer protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gonadotropic hormones PMSG (15 IU/rat), FSH (3 mgrg/rat), LH (9 mgrg/rat) and hCG (3 mgrg/rat) were shown to decrease the free cytosolic lysosomal enzymes during the acute phase of hormone action in rat ovaries. When isolated cells from such rats were analyzed for the cathepsin-D activity, the granulosa cells of the ovary showed a reduction in the free as well as in the total lysosomal enzyme activities in response to FSH/PMSG; the stromal and thecal compartment of the ovary showed a reduction only in the free activity in response to hCG/PMSG. The results suggest the presence of two distinct, target cell specific, mechanisms by which the lysosmal activity of the ovary is regulated by gonadotropins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal cell adhesion molecule ICAM-5 ICAM-5 (telencephalin) belongs to the intercellular adhesion molecule (ICAM)-subgroup of the immunoglobulin superfamily (IgSF). ICAMs participate in leukocyte adhesion and adhesion-dependent functions in the central nervous system (CNS) through interacting with the leukocyte-specific b2 integrins. ICAM-5 is found in the mammalian forebrain, appears at the time of birth, and is located at the cell soma and neuronal dendrites. Recent studies also show that it is important for the regulation of immune functions in the brain and for the development and maturation of neuronal synapses. The clinical importance of ICAM-5 is still under investigation; it may have a role in the development of Alzheimer s disease (AD). In this study, the role of ICAM-5 in neuronal differentiation and its associations with a-actinin and N-methyl-D-aspartic acid (NMDA) receptors were examined. NMDA receptors (NMDARs) are known to be involved in many neuronal functions, including the passage of information from one neuron to another one, and thus it was thought important to study their role related to ICAM-5. The results suggested that ICAM-5 was able to induce dendritic outgrowth through homophilic adhesion (ICAM-5 monomer binds to another ICAM-5 monomer in the same or neighbouring cell), and the homophilic binding activity appeared to be regulated by monomer/multimer transition. Moreover, ICAM-5 binding to a-actinin was shown to be important for neuritic outgrowth. It was examined whether matrix metalloproteinases (MMPs) are the main enzymes involved in ICAM-5 ectodomain cleavage. The results showed that stimulation of NMDARs leads to MMP activation, cleavage of ICAM-5 and it is accompanied by dendritic spine maturation. These findings also indicated that ICAM-5 and NMDA receptor subunit 1 (NR1) compete for binding to a-actinin, and ICAM-5 may regulate the NR1 association with the actin cytoskeleton. Thus, it is concluded that ICAM-5 is a crucial cell adhesion molecule involved in the development of neuronal synapses, especially in the regulation of dendritic spine development, and its functions may also be involved with memory formation and learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utilization of mixtures of glucose and sucrose at nonlimiting concentrations was studied in batch cultures of two common thermophilic fungi, Thermomyces lanuginosus and Penicilium duponti. The sucrose-utilizing enzymes (sucrose permease and invertase) in both fungi were inducible. Both sugars were used concurrently,regardless of their relative proportion in the mixture. At the optimal growth temperature (50C), T.lanuginosus utilized sucrose earlier than it did glucose, but at a suboptimal growth temperature (30°C) the two sugars were utilized at nearly comparable rates. The coutilization of the two sugars was most likely possible because (i) invertase was insensitive to catabolite repression by glucose, (ii) the activity and affinity of the glucose transport system were lowered when sucrose was included in the growth medium, and (iii) the activity of the glucose uptake system was also subject to repression by high concentrations of glucose itself. The concurrent utilization of the available carbon sources by thermophilic fungi might be an adaptive strategy for opportunistic growth in nature under conditions of low nutrient availability and thermal fluctuations in the environment.