894 resultados para Unified Model Reference
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create drowsiness or hypovigilance and impair the ability to react to critical events. Identifying vigilance decrement in monotonous conditions has been a major subject of research, but no research to date has attempted to predict this vigilance decrement. This pilot study aims to show that vigilance decrements due to monotonous tasks can be predicted through mathematical modelling. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants’ performance. This task models the driver’s ability to cope with unpredicted events by performing the expected action. A Hidden Markov Model (HMM) is proposed to predict participants’ hypovigilance. Driver’s vigilance evolution is modelled as a hidden state and is correlated to an observable variable: the participant’s reactions time. This experiment shows that the monotony of the task can lead to an important vigilance decline in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
Using work integrated learning (WIL) in university-industry learning partnerships as a means of developing the deeper and more complex skills of managers is receiving growing interest in the literature. This paper suggests that there are currently, two basic approaches to WIL – the traditional model and the customisation model. While each has strengths, each also has limitations. Responding the call of Patrick et al (2008) for more discussion and research on WIL stratagems, this paper proposes a third model – the sustainable learning partnership – as an option to encourage deeper, more complex and more long-term capacity building in management development.
Resumo:
Objectives: Recovery is an emerging movement in mental health. Evidence for recovery-based approaches is not well developed and approaches to implement recovery-oriented services are not well articulated. The collaborative recovery model (CRM) is presented as a model that assists clinicians to use evidence-based skills with consumers, in a manner consistent with the recovery movement. A current 5 year multisite Australian study to evaluate the effectiveness of CRM is briefly described. Conclusion: The collaborative recovery model puts into practice several aspects of policy regarding recovery-oriented services, using evidence-based practices to assist individuals who have chronic or recurring mental disorders (CRMD). It is argued that this model provides an integrative framework combining (i) evidence-based practice; (ii) manageable and modularized competencies relevant to case management and psychosocial rehabilitation contexts; and (iii) recognition of the subjective experiences of consumers.
Resumo:
While Business Process Management (BPM) is an established discipline, the increased adoption of BPM technology in recent years has introduced new challenges. One challenge concerns dealing with process model complexity in order to improve the understanding of a process model by stakeholders and process analysts. Features for dealing with this complexity can be classified in two categories: 1) those that are solely concerned with the appearance of the model, and 2) those that in essence change the structure of the model. In this paper we focus on the former category and present a collection of patterns that generalize and conceptualize various existing features. The paper concludes with a detailed analysis of the degree of support of a number of state-of-the-art languages and language implementations for these patterns.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Ghrelin is a gut-brain peptide hormone that induces appetite, stimulates the release of growth hormone, and has recently been shown to ameliorate inflammation. Recent studies have suggested that ghrelin may play a potential role in inflammation-related diseases such as inflammatory bowel diseases (IBD). A previous study with ghrelin in the TNBS mouse model of colitis demonstrated that ghrelin treatment decreased the clinical severity of colitis and inflammation and prevented the recurrence of disease. Ghrelin may be acting at the immunological and epithelial level as the ghrelin receptor (GHSR) is expressed by immune cells and intestinal epithelial cells. The current project investigated the effect of ghrelin in a different mouse model of colitis using dextran sodium sulphate (DSS) – a luminal toxin. Two molecular weight forms of DSS were used as they give differing effects (5kDa and 40kDa). Ghrelin treatment significantly improved clinical colitis scores (p=0.012) in the C57BL/6 mouse strain with colitis induced by 2% DSS (5kDa). Treatment with ghrelin suppressed colitis in the proximal colon as indicated by reduced accumulative histopathology scores (p=0.03). Whilst there was a trend toward reduced scores in the mid and distal colon in these mice this did not reach significance. Ghrelin did not affect histopathology scores in the 40kDa model. There was no significant effect on the number of regulatory T cells or TNF-α secretion from cultured lymph node cells from these mice. The discovery of C-terminal ghrelin peptides, for example, obestatin and the peptide derived from exon 4 deleted proghrelin (Δ4 preproghrelin peptide) have raised questions regarding their potential role in biological functions. The current project investigated the effect of Δ4 peptide in the DSS model of colitis however no significant suppression of colitis was observed. In vitro epithelial wound healing assays were also undertaken to determine the effect of ghrelin on intestinal epithelial cell migration. Ghrelin did not significantly improve wound healing in these assays. In conclusion, ghrelin treatment displays a mild anti-inflammatory effect in the 5kDa DSS model. The potential mechanisms behind this effect and the disparity between these results and those published previously will be discussed.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.