978 resultados para Tumor Suppressor Gene
Resumo:
Diffuse infiltrating gliomas are the most common tumors of the central nervous system. Gliomas are classified by the WHO according to their histopathological and clinical characteristics into four classes: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). Several genes have already been correlated with astrocytomas, but many others are yet to be uncovered. By analyzing the public SAGE data from 21 patients, comprising low malignant grade astrocytomas and glioblastomas, we found COL6A1 to be differentially expressed, confirming this finding by real time RT-PCR in 66 surgical samples. To the best of our knowledge, COL6A1 has never been described in gliomas. The expression of this gene has significantly different means when normal glia is compared with low-grade astrocytomas (grades I and II) and high-grade astrocytomas (grades III and IV), with a tendency to be greater in higher grade samples, thus rendering it a powerful tumor marker.
Resumo:
Sequencing technologies and new bioinformatics tools have led to the complete sequencing of various genomes. However, information regarding the human transcriptome and its annotation is yet to be completed. The Human Cancer Genome Project, using ORESTES (open reading frame EST sequences) methodology, contributed to this objective by generating data from about 1.2 million expressed sequence tags. Approximately 30 of these sequences did not align to ESTs in the public databases and were considered no-match ORESTES. On the basis that a set of these ESTs could represent new transcripts, we constructed a cDNA microarray. This platform was used to hybridize against 12 different normal or tumor tissues. We identified 3421 transcribed regions not associated with annotated transcripts, representing 83.3 of the platform. The total number of differentially expressed sequences was 1007. Also, 28 of analyzed sequences could represent noncoding RNAs. Our data reinforces the knowledge of the human genome being pervasively transcribed, and point out molecular marker candidates for different cancers. To reinforce our data, we confirmed, by real-time PCR, the differential expression of three out of eight potentially tumor markers in prostate tissues. Lists of 1007 differentially expressed sequences, and the 291 potentially noncoding tumor markers were provided.
Resumo:
In the context of cancer diagnosis and treatment, we consider the problem of constructing an accurate prediction rule on the basis of a relatively small number of tumor tissue samples of known type containing the expression data on very many (possibly thousands) genes. Recently, results have been presented in the literature suggesting that it is possible to construct a prediction rule from only a few genes such that it has a negligible prediction error rate. However, in these results the test error or the leave-one-out cross-validated error is calculated without allowance for the selection bias. There is no allowance because the rule is either tested on tissue samples that were used in the first instance to select the genes being used in the rule or because the cross-validation of the rule is not external to the selection process; that is, gene selection is not performed in training the rule at each stage of the cross-validation process. We describe how in practice the selection bias can be assessed and corrected for by either performing a cross-validation or applying the bootstrap external to the selection process. We recommend using 10-fold rather than leave-one-out cross-validation, and concerning the bootstrap, we suggest using the so-called. 632+ bootstrap error estimate designed to handle overfitted prediction rules. Using two published data sets, we demonstrate that when correction is made for the selection bias, the cross-validated error is no longer zero for a subset of only a few genes.
Resumo:
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.
Resumo:
IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.
Resumo:
Purpose: Cyclophilin 40 (CyP40) is an estrogen receptor-associated protein which appears to modify receptor function. The aim of this study was to determine the extent of allelic loss at the CyP40 locus in a panel of breast carcinomas using a newly characterized microsatellite marker located upstream of the CyP40 gene and then to correlate this with losses at chromosomal sites for cancer-associated genes. Methods: Allelic loss at CyP40 was determined from patients' matched tumor and normal breast tissue using Genescan 672 software analysis of fluorescently labeled, PAGE-separated PCR products incorporating the marker. For each patient, allelic loss at CyP40 was then assessed and compared with losses at markers for various cancer-associated genes. Results: Allelic loss was detected in 30% of breast carcinomas from patients heterozygous for the CyP40 marker. All carcinomas demonstrating allelic loss were grade II or III invasive ductal carcinomas and generally showed multiple losses at other sites near known cancer-associated genes. Conclusions: The polymorphic marker which we characterized was useful in determining allelic loss at the CyP40 locus in breast cancer patients and when applied in these studies in conjunction with various cancer-associated gene markers, suggests that deletions in the region of the CyP40 gene might be a late event in breast tumor progression.
Resumo:
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a vital role in primary immune responses. Introducing genes into DCs will allow constitutive expression of the encoded proteins and thus prolong the presentation of the antigens derived therefrom. In addition, multiple and unidentified epitopes encoded by the entire tumor-associated antigen (TAA) gene may enhance T cell activation. This study demonstrated that an HIV-1-based lentiviral vector conferred efficient gene transfer to DCs. The transgene, murine tyrosinase-related protein 2 (mTRP-2), encodes a clinically relevant melanoma-associated antigen (MAA), which has been found to be a tumor rejection antigen for B16 melanoma. The transfer and proper processing of mTRP-2 in DCs, in terms of RNA transcription activity and protein expression, were verified by RT-PCR and specific antibody, respectively. Administration of mTRP-2 gene-modified DCs (DC-HR'CmT2) to C57BL/6 mice evoked strong protection against tumor challenge, for which the presence of CD4(+) and CD8(+) cells during both the priming and challenge phase was essential. In a therapy model, our results showed that four of seven mice with preestablished tumor remained tumor free for 80 days after therapeutic vaccination. Given the results shown in this study, mTRP-2 gene transfer to DCs provides a potential therapeutic strategy for the management of melanoma, especially in the early stage of the disease.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Transfer of the herpes simplex virus type I thymidine kinase (HSV-TK) gene into tumor cells using virus-based vectors in conjunction with ganciclovir (GCV) exposure provides a potential gene therapy strategy for the treatment of cancer. Effective gene therapy,, depends on the efficient transfer and specific targeting of therapeutic genes and their protein products to target cells. The purpose of this study was to investigate the anti-tumor effect of Lentivirus-mediated and MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy in animal models. Mouse models were generated with intraperitoneal injection of human epithelial ovarian cancer cells 3AO, which are MUC1-positive. HTV-1-based lentiviral vectors carrying VP22-TK or scFv-VP22-TK were prepared. The animals were injected intraperitoneally with lentivirus containing scFv-VP22-TK, VP22-TK followed by GCV treatment. Combined treatment of lentivirus-expressed scFv-VP22-TK or VP22-TK with GCV inhibited the proliferation and prolonged survival times compared with the control vector. The survival time of animals treated with scFv-VP22-TK/GCV was significantly longer than that of animals treated with VP22-TK/GCV (p = 0.006). Conclusion: Our results suggest that MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy can efficiently inhibit ovarian tumor growth and increase survival in a nude mouse model of ovarian carcinoma. These data support the development of this method for human clinical trials.
Resumo:
The major limiting factor in the successful application of adjuvant therapy for metastatic disease is the lack of adjuvant specificity that leads to severe side effects. Reasoning that T cells of the immune system are highly specific, we generated tumor-specific T cells by genetic modification of mouse primary T cells with a chimeric receptor reactive with the human breast cancer-associated Ag erbB-2. These T cells killed breast cancer cells and secreted IFN-gamma in an Ag-specific manner in vitro. We investigated their use against metastatic breast cancer in mice in an adjuvant setting, and compared their effectiveness with the commonly applied adjuvants doxorubicin, 5-fluorouracil, and herceptin. Mice were inoculated orthotopically with the human erbB-2-expressing spontaneously metastatic mouse breast cancer 4T1.2 in mammary tissue, and the primary tumor was surgically removed 8 days later., Significant metastatic disease was demonstrated in lung and liver at the time of surgery on day 8 with increased tumor burden at later time points. T cell adjuvant treatment of day 8 metastatic disease resulted in dramatic increases in survival of mice, and this survival was significantly greater than that afforded by either doxorubicin, 5-fluorouracil, or herceptin.
Resumo:
Purpose: To identify papillary thyroid carcinoma (PTC)-associated transcripts, we compared the gene expression profiles of three Serial Analysis of Gene Expression libraries generated from thyroid tumors and a normal thyroid tissue. Experimental Design: Selected transcripts were validated in a panel of 57 thyroid tumors using quantitative PCR (qPCR). An independent set of 71 paraffin-embedded sections was used for validation using immunohistochemical analysis. To determine if PTC-associated gene expression could predict lymph node involvement, a separate cohort of 130 primary PTC (54 metastatic and 76 nonmetastatic) was investigated. The BRAF(V600E) mutational status was compared with qPCR data to identify genes that might be regulated by abnormal BRAF/MEK/extracellular signal-regulated kinase signaling. Results: We identified and validated new PTC-associated transcripts. Three genes (CST6, CXCL14, and DHRS3) are strongly associated with PTC. Immunohistochemical analysis of CXCL14 confirmed the qPCR data and showed protein expression in PTC epithelial cells. We also observed that CST6, CXCL14, DHRS3, and SPP1 were associated with PTC lymph node metastasis, with CST6, CXCL14, and SPP1 being positively correlated with metastasis and DHRS3 being negatively correlated. Finally, we found a strong correlation between CST6 and CXCL14 expression and BRAF(V600E) mutational status, suggesting that these genes may be induced subsequently to BRAF activation and therefore may be downstream in the BRAF/MEK/extracellular signal-regulated kinase signaling pathway. Conclusion: CST6, CXCL14, DHRS3, and SPP1 may play a role in PTC pathogenesis and progression and are possible molecular targets for FTC therapy.
Resumo:
Context: A better means to accurately identify malignant thyroid nodules and to distinguish them from benign tumors is needed. We previously identified markers for detecting thyroid malignancy, with sensitivity estimated at or close to 100%. One lingering problem with these markers was that false positives occurred with Hurthle cell adenomas (HCA) which lowered test specificity. Methods: To locate accurate diagnostic markers, we profiled in depth the transcripts of a HCA and a Hurthle cell carcinoma (HCC). From 1146 differentially expressed genes, 18 transcripts specifically expressed in HCA were tested by quantitative PCR in a wide range of thyroid tumors (n = 76). Sensibility and specificity were calculated using receiver operating characteristic (ROC). Selected markers were further validated in an independent set of thyroid tumors (n = 82) by immunohistochemistry. To define the panel that would yield best diagnostic accuracy, these markers were tested in combination with our previous identified markers. Results: Seventeen of the 18 genes showed statistical significance based on a mean relative level of expression (P < 0.05). KLK1 (sensitivity = 0.97) and PVALB (sensitivity = 0.94) were the best candidate markers. The combination of PVALB and C1orf24 increased specificity to > 97% and maintained sensitivity for detection of carcinoma. Conclusion: We identified tumor markers that can be used in combination for a more accurate preoperative diagnosis of thyroid nodules and for postoperative diagnosis of thyroid carcinoma in tumor sections. This improved test would help physicians rapidly focus treatment on true malignancies and avoid unnecessary treatment of benign tumors, simultaneously improving medical care and reducing costs. (J Clin Endocrinol Metab 96: E151-E160, 2011)
Resumo:
Background: Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. Objectives: The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. Patients: Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. Methods: Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. Results: IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28 -2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose-and time-dependent manner in both cell lines through a significant increase of apoptosis. Conclusion: IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Resumo:
Wilms tumor (WT), a tumor composed of three histological components - blastema (BL), epithelia and stroma - is considered an appropriate model system to study the biological relationship between differentiation and tumorigenesis. To investigate molecular associations between nephrogenesis and WT, the gene expression pattern of individual cellular components was analyzed, using a customized platform containing 4,608 genes. WT gene expression patterns were compared to genes regulated during kidney differentiation. BL had a closer gene expression pattern to the earliest stage of normal renal development. The BL gene expression pattern was compared to that of fetal kidney (FK) and also between FK and mature kidney, identifying 25 common de-regulated genes supposedly involved in the earliest events of WT onset. Quantitative RT-PCR was performed, confirming the difference in expression levels for 13 of 16 genes (81.2%) in the initial set and 8 of 13 (61.5%) in an independent set of samples. An overrepresentation of genes belonging to the Wnt signaling pathway was identified, namely PLCG2, ROCK2 and adenomatous polyposis coli (APC). Activation of the Wnt pathway was confirmed in WT, using APC at protein level and PLCG2 at mRNA and protein level. APC showed positive nuclear immunostaining for an independent set of WT samples, similarly to the FK in week 11. Lack of PLCG2 expression was confirmed in WT and in FK until week 18. Taken together, these results provided molecular evidence of the recapitulation of the embryonic kidney by WT as well as involvement of the Wnt pathway in the earliest events of WT onset. Copyright (C) 2008 S. Karger AG, Basel.