895 resultados para Transition from Care
Resumo:
A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) arc-heated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.
Resumo:
ZnO films doped with different contents of indium were prepared by radio frequency sputtering technique. The structural, optical and emission properties of the films were characterized at room temperature using XRD, XPS, UV-vis-NIR and PL techniques. Results showed that the indium was successfully incorporated into the c-axis preferred orientated ZnO films, and the In-doped ZnO films are of over 80% optical transparency in the visible range. Furthermore, a double peak of blue-violet emission with a constant energy interval (similar to 0.17 eV) was observed in the PL spectra of the samples with area ratio of indium chips to the Zn target larger than 2.0%. The blue peak comes from the electron transition from the Zn-i level to the top of the valence band and the violet peak from the In-Zn donor level to the V-Zn level, respectively.
Resumo:
We investigate the effect of clusters in complex networks on efficiency dynamics by studying a simple efficiency model in two coupled small-world networks. It is shown that the critical network randomness corresponding to transition from a stagnant phase to a growing one decreases to zero as the connection strength of clusters increases. It is also shown for fixed randomness that the state of clusters transits from a stagnant phase to a growing one as the connection strength of clusters increases. This work can be useful for understanding the critical transition appearing in many dynamic processes on the cluster networks.
Resumo:
High-spin states in Pd-101 have been investigated experimentally via the Ge-76(Si-28, 3n gamma)Pd-101 reaction. The previously known bands based on the d(5/2) and h(11/2) neutron orbitals have been extended to higher-spin states, and two new structures have been observed. Spin and parity were assigned to the levels on the basis of the experimental results of the angular distribution of gamma rays deexciting the oriented states. For the ground-state band, the E-GOS (E-Gamma Over Spin) curve strongly suggests a structure transition from vibration to rotation while increasing spin.
Resumo:
Considering the fact, in the real world, that information is transmitted with a time delay, we study an evolutionary spatial prisoner's dilemma game where agents update strategies according to certain information that they have learned. In our study, the game dynamics are classified by the modes of information learning as well as game interaction, and four different combinations, i.e. the mean-field case, case I, case II and local case, are studied comparatively. It is found that the time delay in case II smoothes the phase transition from the absorbing states of C (or D) to their mixing state, and promotes cooperation for most parameter values. Our work provides insights into the temporal behavior of information and the memory of the system, and may be helpful in understanding the cooperative behavior induced by the time delay in social and biological systems.
Resumo:
The phase evolution of yttrium oxide and lanthanum oxide doped zirconia (Y2O3-ZrO2 and La2O3-ZrO2, respectively) from their tetragonal to monoclinic phase has been studied using UV Raman spectroscopy, visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD mainly give the bulk information. For Y2O3-ZrO2 and La2O3-ZrO2, the transformation of the bulk phase from the tetragonal to the monoclinic is significantly retarded by the presence of yttrium oxide and lanthanum oxide. However, the tetragonal phase in the surface region is difficult to stabilize, particularly when the stabilizer's content is low. The phase in the surface region can be more effectively stabilized by lanthanum oxide than yttrium oxide even though zirconia seemed to provide more enrichment in the surface region of the La2O3-ZrO2 sample than the Y2O3-ZrO2 sample, based on XPS analysis. The surface structural tension and the enrichment of the ZrO2, component in the surface region of ZrO2-Y2O3 and ZrO2-La2O3 might be the reasons for the striking difference between the phase change in the surface region and the bulk. Accordingly, the stabilized tetragonal surface region can significantly prevent the phase transition from developing into the bulk when the stabilizer's content is high.
Resumo:
Land-cover changes in China are being powered by demand for food for its growing population and by the nation's transition from a largely rural society to one in which more than half of its people are expected to live in cities within two decades. Here we use an analysis of remotely sensed data gathered between 1990 and 2000, to map the magnitude and pattern of changes such as the conversion of grasslands and forests to croplands and the loss of croplands to urban expansion. With high-resolution ( 30 m) imagery from Landsat TM for the entire country, we show that between 1990 and 2000 the cropland area increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China, large areas of woodlands, grasslands and wetlands were converted to croplands, while in southern China large areas of croplands were converted to urban areas. The land-cover products presented here give the Chinese government and international community, for the first time, an unambiguous understanding of the degree to which the nation's landscape is being altered. Documentation of these changes in a reliable and spatially explicit way forms the foundation for management of China's environment over the coming decades.
Resumo:
Chain topology strongly affects the static and dynamic properties of polymer melts and polymers in dilute solution. For different chain architectures, such as ring and linear polymers, the molecular size and the diffusion behavior are different. To further understand the chain topology effect on the static and dynamic properties of polymers, we focus on the tadpole polymer which consists of a cyclic chain attached with one or more linear tails. It is found that both the number and the length of linear tails play important roles on the properties of the tadpole polymers in dilute solution. For the tadpole polymers with fixed linear tail length and number, with increasing the degree of polymerization of tadpole polymers, a transition from linear-like to ring-like behavior is observed for both the static and dynamic properties.
Resumo:
Fast densification of 8YSZ ceramics under a high pressure of 4.5 GPa was carried out at different temperatures (800, 1000, 1450 degrees C), by which a high relative density above 92% could be obtained. FT-Raman spectra indicate that the 8YSZ underwent a phase transition from partially tetragonal to partially cubic phase as temperatures increase from 1000 to 1450 degrees C when sintering under high pressure. The electrical properties of the samples under different high-pressure sintering conditions were measured by complex impedance method. The total conductivity of 0.92 x 10(-2) S cm(-1) at 800 degrees C has been obtained for 8YSZ under high pressure at 1450 degrees C, which is about 200 degrees C lower than that of the samples prepared by conventional pressureless sintering.
Resumo:
We realized an organic electrical memory device with a simple structure based on single-layer pentacene film embedded between Al and ITO electrodes. The optimization of the thickness and deposition rate of pentacene resulted in a reliable device with an on/off current ratio as high as nearly 10(6), which was two orders of magnitude higher than previous results, and the storage time was more than 576 h. The current transition process is attributed to the formation and damage of the Interface dipole at different electric fields, in which the current conduction showed a transition from ohmic conductive current to Fowler-Nordheim tunneling current. After the transition from ON- to OFF-state, the device tended to remain in the OFF-State even when the applied voltage was removed, which indicated that the device was very promising for write-once read-many-times memory.