943 resultados para Transduction
Resumo:
Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC 50) occurring at 16.9 ± 1.3, 12.4 ± 0.5 and 8.4 ± 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway.
Resumo:
Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.
Resumo:
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Resumo:
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Resumo:
The effect of salts, detergents and chaotropic agents on mass spectrometric analysis are relatively well understood, mainly due to their actions decreasing the performance of ESI interface in mass spectrometric analysis. However, there are few studies in the literature characterizing the effect of protein stabilization by glycerol, followed in some circumstances by the suppression of protein signal when ESI interface is used. The aim of the present research was to investigate in details the mass spectrometric behavior of some proteins in presence of high levels of glycerol during ESI-MS analysis. Thus, horse heart myoglobin and chicken ovalbumin were used as standard proteins. It was demonstrated that the presence of 1% (v/v) glycerol suppressed the signal of these proteins during the ESI-MS analysis, even when the sample nozzle potential was scanned from 28 to 80 V. However, when the glycerol concentration was decreased to 0.5% (v/v) and the sample cone voltage adjusted to 50 V, a perfect envelope of peaks was observed, allowing the spectrum deconvolution and the molecular mass determination with mass accuracy lower than 0.01% in each situation. A molecular explanation for this suppressive effect and for the analytical overcoming of this difficult is proposed.
Resumo:
Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.
Resumo:
OBJECTIVES: Pleomorphic adenomas are the most frequent type of epithelial salivary gland neoplasms, and their malignant counterpart, the carcinoma in pleomorphic adenomas, is much less common. Beta-catenin is a cell adhesion molecule associated with the invasion and metastasis of carcinomas of the head and neck, esophagus. The objective of this study was to detect the expression of beta-catenin in pleomorphic adenomas, carcinomas in pleomorphic adenomas and normal salivary glands to discuss its role in the development of these two lesions. STUDY DESIGN: The expression of beta-catenin (BD Transduction Laboratories) was analyzed by immunohistochemistry in formalin-fixed, paraffin embedded specimens by the avidin-biotin-peroxidase complex method in 16 pleomorphic adenomas (12 from minor salivary glands), 3 carcinomas in pleomorphic adenomas (all from palate) and 10 normal salivary glands as control group (5 from major and 5 from minor salivary glands). RESULTS: All cases of glands, adenomas and carcinomas in pleomorphic adenomas have membranous and cytoplasmic immunostaining. Nuclear beta-catenin immunostaining was not observed. The antibody presented a fine granular arrangement in the cytoplasm and cellular membrane of duct and acinic cells. Higher beta-catenin index rates were seen mainly in salivary gland ducts and in ductal structures in the adenomas and carcinomas in pleomorphic adenomas. There was protein loss in pleomorphic adenomas and cytoplasmic accumulation in carcinoma in pleomorphic adenomas. CONCLUSIONS: The present study showed participation of the loss of beta-catenin adhesion molecule in the development of pleomorphic adenoma, and that the cytoplasmic accumulation of the molecule takes part in the malignant transformation of the pleomorphic adenoma into carcinoma in pleomorphic adenoma.
Resumo:
Due to a shortage of textbooks with specific data on muscular activity concerning physical conditioning and sports, we analysed electromyographically the muscles pectoralis major and deltoideus anterior, bilaterally, in inclined flying exercises, during the concentric and eccentric phases, with external loads of 25, 50, 75 and 100% of the maximum load. The electromyographic analysis was performed in eleven male volunteers with MEDITRACE-200 surface electrodes connected to a six-channel biologic signal acquisition module coupled to a PC/AT computer. The electromyographic signals were processed and the obtained effective values were normalized through maximum voluntary isometric contraction. Statistically, the results showed that all the muscles studied presented significant differences between the concentric and the eccentric phases, with higher electromyographic activity during the concentric phase. By analysing the different loads for each muscle in both phases, significant electromyographic activity was observed for all muscles. When the effect of each load on each muscle during the concentric phase was analysed, it was noticed that the muscles on the left were more active than those on the right side, while in the eccentric phase the muscles had different behavior.
Resumo:
Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.
Resumo:
Presently, acupuncture is a technique considered to be capable of stimulating the regulatory systems of the organism, such as the central nervous system, the endocrine system and the immunological system. The median frequency of the upper trapezium muscle with 40% and 60% of maximal voluntary contraction (MVC) of 15 healthy volunteers, was analyzed after the individuals were submitted to the AA treatment. The non-parametric Friedman test was used to compare median frequency values. In this exploratory study, the level of significance of each comparison was set to p < 0.05. The intraclass analyses indicate a significant increase of the median frequency muscle at 60% of the MVC (Wicoxon test). Based on the results found, the AA peripheral stimulus can act as a modulator mechanism of muscle activity and was possible to verify correspondence of the auricular acupoint with the trapezius muscle. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The advancement of knowledge in neurophysiology has demonstrated that acupuncture is a method of peripheral neural stimulation that promotes local and systemic reflexive responses. The purpose of this study was to determine if surface electromyography can be used as a tool to study the action of auricular acupuncture on striated skeletal muscle. The electromyographic amplitudes of the anterior, middle and posterior deltoid muscle and the upper trapezium muscle with 20%, 40% and 60% of maximal voluntary contraction of 15 healthy volunteers, were analyzed after the individuals were submitted to the auricular acupuncture treatment. The non-parametric Friedman test was used to compare Root Mean Square values estimated by using a 200 ms moving window. Significant results were further analyzed using the Wilcoxon signed rank test. In this exploratory study, the level of significance of each comparison was set to p < 0.05. It was concluded in this study that a surface electromyography can be used as a tool to investigate possible alterations of electrical activity in muscles after auricular acupuncture. However there is still a lack of adequate methodology for its use in this type of study, being that the method used to record the electromyographic signal can also influence the results. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effects of occlusal splint on the electric activity of masseter were studied in 15 women who presented sleep bruxism using surface electromyography. Sleep bruxism was defined by its clinical characteristics. The signal acquisition was done during mandible occlusion without clenching and maximum voluntary contraction in two situations. The first was after a workday without using the occlusal splint; and the second, after a sleeping night using occlusal splints. Evaluating masseter muscles during mandible occlusion without clenching, it could be observed that lower values were noticed after splint wearing in both sides. The same results were verified in maximum voluntary contraction (MVC). These results confirmed that the use of occlusal splints reduced the electromyographic activity of the right and left masseters, showing its myorelaxing effect. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study proposal was to evaluate the changes at a masticatory muscle temporalis and masseter, through a eletromyographic, at ponters of the right unilateral bite posterior, verifying the difference at the eletric activity between right and left sides. Twenty female volunteers, with ages between 7 and 8 (x = 7.4). The eletromyographics signals were collected in both sides in all volunteers in rest situations and in an usual isotonic mastication, right, left and bilateral and the maximun isometric constriction, which sinal was used to the eletric activity amplitude normalization. The results signed that the right masseter muscle presents an expressive statistic difference, if compared with the left masseter muscle during the left and right mastication, suggesting a right unilateral mastication. The muscle haven't gotten any expressive variance in this amplitude which remained to a proximate flat noticed in a right and habitual mastication, suggesting a right and one sided mastication during the left mastication occurs a raise of the eletric signal amplitude of the muscle left masseter. The right masseter muscle haven't gained any expressive variance, which remained in a proximate flat observed in an usual and right mastication, suggesting a muscular pattern hyperfunction next to the dental crossing.