976 resultados para Tolerância a Pb e Zn
Resumo:
为探讨藏药"帕朱胶囊"中微量元素与其治疗胃病的相关性,以及监测藏药中的重金属含量,采用原子吸收分光光度法,对帕朱胶囊中的11种元素进行了测定.结果表明,帕朱胶囊中Fe元素含量较高,并含有Cu、Zn、Mn、Se等与治疗胃病直接相关的微量元素,重金属元素Pb、As、Hg含量不超标.为研究传统藏药帕朱胶囊的药效物质基础和安全使用,提供了科学依据.
Resumo:
分析了青藏高原北麓河地区29种高寒植物15个元素含量的特征。结果表明,这些植物中元素平均含量〉400μg/g的元素有Ca,Mg,Na,K,Fe,10~100μg/g的有Mn,Cr,Zn,Cu,〈10μg/g的有Ni,Co,As,Pb,Cd,Hg;种间同种元素的含量变化规律不统一。相关性分析表明,Cu与Cd,Fe与Cd和Hg,Cr与Ni,Co和Mg极显著正相关,Cr和Ca极显著负相关;聚类分析表明,Na,As元素对本区植物聚类的影响最大,莎草科、禾本科、菊科科内植物元素含量相似。
Resumo:
测定了青海三角城牧场牛羊主要采食的18种牧草中与动物健康密切相关的14种微量元素含量,并对牧草质量进行了评价.结果表明,Zn、 Mg、Se、Mn等微量元素含量较低,当地羊群地方病与此有关;其它营养元素含量相对正常;有害元素Pb、Cd、As、Hg含量较低.比较去离子水洗涤和非洗涤的牧草,两者微量元素含量无明显差异,说明在青藏高原洁净的自然环境下,牧草所粘附泥土及其它杂质很少.
Resumo:
采用220FS原子吸收光谱仪测定了传统藏药牦牛骨中的K、Na、Ca、Mg、P、Cu、Zn、Fe、Mn、Ni、Pb、Cd等12种矿物质元素含量。结果显示,藏药牦牛骨中含有丰富的矿物质元素,对儿童和青少年骨骼的生长发育,中老年骨质疏松症预防有着极为重要的营养学和治疗意义,开发前景广阔。
Resumo:
The Chinese Altai is one of the most important volcanogenic massive sulfide (VMS) deposit districts in China. All orebodies were lenticular or bedded and stratabounded by a suite of early Devonian volcanic-sedimentary rocks. Hydrothermal feeder zones developed under some of the orebodies. All the ores are massive or laminated, and show typical characteristics of VMS deposit. Based on the mineralizing time and the metal assembles, we divide 3 metallogenic stages: 1, Fe orefroming stage associated with basaltic and sedimentary rocks during very early Devonian; 2, Cu-Pb-Zn oreforming stage associated with rhyolitic and sedimentary rocks during early Devonian; 3, Cu-Zn oreforming stage in the dacitic and basaltic rocks during mid. Devonian. The hosting rocks for all orebodies are different, but they show very similar geochemical and isotopic characteristics. All the felsic rocks show enriched lighted rare earth elements (REE) patterns (La/Yb>5), and with an obvious Eu negative anomalies (Eu/Eu*<0.6). In the meanwhile, all the mafic rocks show flat REE pattern and no Eu anomalies. The Ashele basalt show an apparent Ce negative anomalies (Ce/Ce* <0.76), All the volcanic roks in Chinese Altai show the decoupled property between the high field strength elements (HFSE) and large ion lithophile elements (LILE). The negative Nb, Ta characteristics with respect to adjacent elements indicate that subduction-modified source. The Nd(t) of the hosting rocks for all orebodies changed in a small range (-1.5~5), and the (87Sr/86Sr)i change in a big range. The initial Sr value of the hosting rocks in Mengku and Tiemuerte are obviously affected by the seawater (0.705~0.710), and initial Sr values of hosting rocks Ashele change in a small range (0.704~0.706). All Sr-Nd isotopes of ores have the same range with the hosting rocks, indicating that both the ores and volcanic rocks have the same island arc source. The mean sulfur isotopes of sulfides from Ashele and Mengku are 6.2‰ and 3.4‰, respectively, indicating a deep magmatic source. However, the sulfur isotopes of sulfides from Keketale, Tiemuerte and Keyinbulake changed in -15.8‰~9.9‰, -23.5‰~1.87‰, -8.3‰~1.6‰, respectively. And the big sulfur isotope range indicated that the sulfur of the ores was a combination biogenic and magmatic source. All volcanic rocks from the VMS deposits in the southern Chinese Altai show a typical subduction related environments. Based on the regional and locally geological evidence, here we propose that the southern Chinese Altai is an island arc system, and all VMS deposits formed during the lateral accretion process. No VMS deposit formed during the formation of the island arc during Silurian; Fe VMS deposit formed during the beginning of the opening of the backarc basin in very early Devonian; Cu-Pb-Zn VMS deposits formed during the mature stage of the backarc basin in early Devonian; at last the Cu-Zn VMS deposit formed during the rifted stage of the island arc itself.
Resumo:
The Derni large Cu-Co-Zn sulfide deposit is occurred in the Derni melange belt, which is located in the eastern section of the A'nyemaqen ophiolite melange belt. The Derni deposit is hosted in the mantle peridotites and is very special in the world. Because the studying area is of very bad natural environment and very low geological research, the geotectonic setting and genesis of the deposit have long been debated. This paper studied these two questions and answered them. The research is of great significance to reveal impotant information of deep geology, crust-mantle interaction and geotectonic evolution, to enrich theories in the study of mineral deposit and provide scientific basic data for exploration and exploit of this kind of deposit. Based on the series of new achievements and new cognitions, to start with the geologic setting of the Derni deposit, through detailed field, tectonics, petrology, geochemistry, isotopic geochronology, microfossil, and study of mineral deposit, belongs to a melange belt, including mantle peridotites slice with ore, Late Precambrian sandstone and slate slice, metamorphic rock slice. 2. Petrological and geochemical characteristics indicate that the Derni mantle peridotite is not ophiolite mantle peridotite, but is occurred under the continental crust. 3. The U-Pb isotopic age of single-grain zircon form the accumulative rock suggests that the Derni mantle peridotite were formed in 747±10Ma, and underwent a great period of metamorphic process in 441.5±2.5Ma. 4. Microfossil assemblage from the carbonaceous slate belongs to Late Precambrian. Through petrography and petrochemistry, sandstone and slate were formed in the continental margin. 5. Sideronitic texture, which is first discovered in this study, reveals the characteristics of magmatic liquation. 6. Fluid inclusion explosion temperature of pyrite is in the range of -6.15~+6.64‰, and Pb isotope is consistent with mantle peridotite, which suggest ore-forming materials are from the mantle. To sum up, the upper mantle was melting partially, when it was metasomated by the mantle fluids with abundant Cu, Co, Zn, S, Au and LREE etc. The pockets of magma became enlarged by mantle tenacity shearing, and the pockets of magma occurred magmatic differentiation in the stable field, then the magma and ore pulp together with mantle refractory remnant dirpired and crystallized in the shallow part of the crust.
Resumo:
Kunyushan composite granite pluton is located in northeast part of the Sulu UHP collisional belt, Jiaodong peninsula, eastern China. It is regarded as the boundary of the Jiaodong block and the Sulu UHP collisional belt. The body is unique in the Dabieshan-Sulu UHP collisional orogen for its feature of multiple intrusions of diverse types granitoid rocks in a long span after UHP the collision between the North China and the Yangtze plates in late Triassic. It can be grouped into four series on the basis of petrology and petrochemistry. They are mid-K calc-alkaline granitoids, strongly peraluminous granites, high-K calc-alkaline granitoids and syenitic granite of shoshonitic series. In this thesis, the later three types of rocks are investigated geochronologically in detail. The grain zircon U-Pb isotope dilution dating technique has been employed in this study. Zircon morphology are presented and discussion on the chemical and physical conditions of the granite formation have been carried out in addtion. Strongly peraluminous granites comprises foliated monzogranite and garnet bearing leucogranite. They occupy more than half of the area of the Kunyushan composite body. Three zircon samples of foliated monzogranites have been analyzed, they yield lower intercept ages mainly in the range of 140-150 Ma. The formation of these rocks was likely to be at 700-600 ℃, implied by zircon morphology. Two zircon samples of the garnet bearing leucogranite yield lower intercept ages from 130 Ma to 140 Ma. Zircon morphology indicate that the liquidus temperature of the magma was about 750 °C. Syenitic granite of shoshonitic series occur in the north central part of the body, and the volume is quite small contrast to other types. One zircon sample was chosen from this rock, and yield lower intercept age of 121+1.8/-2.1 Ma. Zircon morphology indicate that the liquidus temperature of this rock is up to 900 °C, which is much higher than others'. High-K calc-alkaline granitoids can be divided into two types on the basis of rock texture and structure. One is Kf-porphyritic monzogranite. It's outcrop is quite small. Zircon ages of one sample constrain the emplacement of this rock at about 112 Ma. The other is medium-grain to coarse-grain monzogranite. Zircons from it yield lower intercept age of 100.5+2.9/-4.6 Ma. The variation of zircon morphology suggest that these two monzogranites were outcomes of a single magma at different stage. The former emplaced earlier than the latter. The liquidus temperature of the magma was about 800 ℃ Inherited zircon is ubiquitous in the Kunyushan composite body. Most of the samples yield upper intercept ages of late Proterozoic. It was considered that only the Yangtze plate underwent a crustal growth during late Proterozoic among the two plates which involved into the UHP collision. Inherited zircon of about 200 Ma can also be observed in strongly peraluminous and high-K calc-alkaline granitoids. Two samples out of eight yield upper intercept ages of Achaean.
Resumo:
Using knowledge of geology, geochemistry, coal petrology, mineralogy, by means of a variety of advanced measuring methods such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled atomic emission spectrometry (ICP-AES), X-ray powder diffraction (XRD), scanning electron microscopy with energy-dispersive spectrometer(SEM-EDS), sequential chemical extract and density fractions, the characteristics of trace elements and minerals in Jurassic Beipiao coal mine under inland limnetic sedimentary environment and in late Permian Jianxin and Qiaotou coal mines under paralic swamp sedimentary environment were studied. Compared with the average concentration in the world bituminous coals, the Beipiao coal was characterized by relatively high contents of Sc, Ti, Cr, Co, Ni, Zn, Se, Sr, Zr, Y, Ba, REE and Th, and lower contents of V, Rb, Cd, Sn, Pb, Bi and U; while the Jianxin coal was relatively enriched in Li, Sc, Ga, Sr, Y, Nb, Sb, Th and U, with low concentration of Be, Co, Ni, Cu, Ge, Zr, Mo, Cd, Cs, Ba, Pb and Bi; and the Qiaotou coal was enriched in Li, Sc, Sr, Nb, Ta, Zr, REE, Hf, Th and U, with low concentration of Be, V, Co, Ni, Cu, Ge, Mo, Cd, Cs, Ba, Tl, Pb and Bi. The concentrations of Ca, Mg and K in Beipiao coal are higher than those in Jianxin coal and Qiaotou coal, while Fe, S and Ti in Beipiao coal are lower than those in Jianxin coal and Qiaotou coal. The proximate analysis of coal samples was carried out, which indicated that Beipiao coal was medium- to high- ash (5.92-60.68%) with low sulphur coal, and Jianxin coal and Qiaotou coal was medium to high ash (8.85-46.33%) with high sulphur. The reflectivity was measured, which explained that Beipiao coal belonged to high volatile bituminous coal, Jianxin coal was low volatile bituminous coal and Qiaotou coal was low volatile anthracite. Quantitative maceral analyses were studied. The characteristics of rare earth elements (REE) were investigated, which showed that the total contents of REE were higher than that of the world's average content. With the increase of coal's metamorphic grade, the total contents of REE decreased from 98.5 X 10"6 of Beipiao coal to 94.2 X 10"6 of Jianxin coal, and to 75.9 X 10"6 of Qiaotou coal, and 5Eu reduced which indicated that the element Eu depleted. The characteristics of REE was controlled by the metamorphic grade of coal. And REE were mainly absorbed in clay minerals in Beipiao coal samples, while in Jianxin and Qiaotou coal mines, REE were primarily related to clay mineral and pyrite. The variation of trace elements in vertical direction of coal seams was studied, and the results showed that different trace elements differed greatly. The correlation between trace elements and ash were determined. Four major trace elements (aluminium-silicates, sulphide, carbonate and phosphate) accounted for the occurrence and distribution of most elements studied were determined. Coal samples were separated by density fraction, which showed that Cr, Cu, Mo and Pb were closely related to inorganic matters mainly distributed in P >2.6 and dropped remarkably in the density fractions P <2.3 . The occurrences of Co, Cr, Ni, As, Se, Mo, U were studied directly and quantitatively using sequential chemical extract with six steps, which showed that Co. Ni, Mo and U were mainly in the form of mineral, and As, Se chiefly in the form of organic state, while Cr mostly in the form of organic state and mineral. Major mineral phases presented in the Beipiao coal were Kaolinite, illite, quartz, calcite, and small amount of siderite, barite. While major mineral phases in Jianxin and Qiaotou coal were pyrite, kaolinite, and small amount of marcasite, rutile, sphalerite. This is the first time that the chromite in the coal was discovered in China, which indicates that Cr occurrence appeared in the form of chromite. The ratio of Sr/Ba, Sr/Ca and V/Ni in Beipiao coal mine under inland limnetic is smaller than that of in Jianxin and Qiaotou coal mines under paralic swamp. The ratio of K/Na and Th/U of Beipiao coal mine is higher than that of Jianxin and Qiaotou coal mine, which proved that Beipiao coal was not affected by sea water and Jianxin and Qiaotou coal were affected by sea water. Trace elements such as Cr, Ni, Mo in minerals were analyzed by SEM-EDS. The factors controlling the enrichment of trace elements can be divided into syngenetic stage factors and epigenetic stage factors.
Resumo:
The Western Qinling Orogenie belt in the Taibai-Fengxian and Xihe-Lixian areas can be subdivided into three units structurally from north to south, which are the island-arc, forearc basin and accretionary wedge, respectively. The forearc basin developed in the Late Paleozoic mainly controls sedimentation and some larger lead-zinc and gold deposits in the western Qinling. Stratigraphically, the island arc is dissected into the Liziyuan Group, the Danfeng Group and the Luohansi Group. The metavolcanic rocks include basic, intermediate and acidic rocks, and their geochemistry demonstrates that these igneous rocks generated in an island arc. Where, the basalts are subalkaline series charactered by low-medium potassium, with enriched LREE, negative Eu anomaly, and positive Nd anomaly. Cr-content of volcanic rocks is 2-3 times higher than that of island arc tholeiite all over the world. In addition, the lightly metamorphosed accretionary wedge in the areas of Huixian, Chengxian, Liuba and Shiqun is dominated by terrigenous sediments with carbonatite, chert, mafic and volcanic rocks. The age of the wedge is the Late Palaeozoic to the Trassic, while previous work suggested that it is the Silurian. The Upper Paleozoic between the island arc belt and accretionary wedge are mainly the sediments filled in the fore arc basin. The fillings in the forearc basin were subdivided into the Dacaiotan Group, the Tieshan Group, the Shujiaba Group and the Xihanshui Group, previously. They outcropped along the southern margins of the Liziyuan Group. The Dacaotan Group, the Upper Devonian, is close to the island arc complex, and composed of a suite of red and gray-green thick and coarse terrestrial elastics. The Shujiaba Group, the Mid-Upper Devonian, is located in the middle of the basin, is mainly fine-grained elastics with a few intercalations of limestone. The Xihanshui Group, which distributes in the southern of the basin, is mainly slates, phyllites and sandstones with carbonatite and reef blocks. The Tieshan Group, the Upper Devonian, just outcrops in the southwest of the basin, is carbonatite and clastic rocks, and deposited in the shallow -sea environment. The faults in the basin are mainly NW trend. The sedimentary characteristics, slump folds, biological assemblages in both sides of and within those faults demonstrate that they were syn-sedimentary faults with multi-period activities. They separated the forearc basin into several sub-basins, which imbricate in the background of a forearc basin with sedimentary characteristics of the piggyback basin. The deep hydrothermal fluid erupted along the syn-sedimentary faults, supported nutrition and energy for the reef, and resulted in hydrothermal-sedimentary rocks, reef and lead-zinc deposits along these faults. The sedimentary facies in the basin varies from the continental slope alluvial fan, to shallow-sea reef facies, and then to deep-water from north to south, which implies that there was a continental slope in the Devonian in the west Qinling. The strata overlap to north and to east respectively. Additionally, the coeval sedimentary facies in north and south are significantly different. The elastics become more and more coarser to north in the basin as well as upward coarsing. These features indicate prograding fillings followed by overlaps of the different fans underwater. The paleocurrent analyses show that the forearc basin is composed of thrust-ramp-basins and deep-water basins. The provenance of the fillings in the basin is the island arc in the north. The lead-zinc deposits were synchronous with the Xihanshui Group in the early stage of development of the forearc basin. They were strongly constrained by syn-sedimentary faults and then modified by the hydrothermal fluids. The gold deposits distributed in the north of the basin resulted from the tectonic activities and magmatism in the later stage of the basin evolution, and occurred at the top of the lead-zinc deposits spatially. The scales of lead-zinc deposits in the south of the basin are larger than that of the gold-deposits. The Pb-Zn deposits in the west of the basin are larger than those in the east, while the Gold deposits in the west of the basin are smaller than those in the east. Mineralizing ages of these deposits become younger and younger to west.
Resumo:
Distributions of elements especially hazard trace elements in coals and their wastes from a coal fired power plant have been studied in detail using knowledge of Geology, Mineralogy, Geochemistry and Environmental chemistry. The key work is on the small particle sizes of fly ashes which escaped from electric precipitator and discharged into atmosphere. By means of X-ray powder diffraction (XRD) and scanning electron microscopy with energy-dispersive spectrometer (SEM-EDS), the characteristics of minerals and morphologies were studied. Different types of fly ash were formed in different stages and processes. More than 50% of small fly ashes belonged to inhalable particles (PM10). The very fine fly ashes preferred to attach on surface of bigger fly ash or conglutinate with each other and this decreased the environmental impact of tiny fly ashes. The trace elements in coal, fly ashes, slags and small particle sizes of fly ashes had been analysed by means of Neutron Activation Analysis (INAA), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES). As particle sizes decreasing, distributions of most elements increased, but in contrary to most studies, this increasing trend was not very obviously because of the tendency of attachment of tiny fly ashes. The occurrence of 30 elements including hazard trace elements of Cd, Cr, Ni, Co, Pb, Zn, As, Se, Cu, V was studied by means of sequential chemical extract. The annual discharge of hazard trace elements of slag, fly ash, small fly ash (PM10), tiny fly ash (PM2.5) and air was calculated by mass balance. S, V, Cu, Pb, Se, Mo, Cd from power plant had potential impacts on environment. Hazard trace elements from the power plant had little effect on soil and aerosol comparing to those from other industrial sources and the effects were mostly on downwind direction. Both the high performance electric precipitator and high chimney made the hazard trace elements from power plant being transported far away but little environmental impacts.
Resumo:
In this paper, We analyzed the geological and geographical settings of dinosaurs extinction at the end of Cretaceous, especially the effect of the change of the elements contents on dinosaurs extinction. We studied basis on the two typical sections-Cretaceous-Paleocene boundary (Baishantou section (in Jiayin, Heilongjiang province of China) and Arkhara-Boguchan Coal Mine section (in Far East of Russian)) and Longgushan section (in Jiayin, Heilongjiang province of China) mainly. This work provided some evidences for forecasting the effects of global environmental change on bio-circle. The followings are the primary gains: According to the paleo-climate indexes (CaO/MgO,Sr/Ba) and the results of Factor Analysis, we found that there were similar climate in Baishantou section and Arkhara-Boguchan Coal Mine section near the K/E boundary, and both of them took on the trend of temperature declining and precipitation heightening after transitory high-temperature and drought. There are similar change and evlution rule of the elements contents near the boundary in the both sections (Baishantou section and Arkhara-Boguchan Coal Mine section). Both iron group elements and chalcophile elements appeared obvious abnormity. There are not visible correlation between the change of elements contents and climate indexes. This shows that the elements abnormity maybe came from the factors excluding climate or the factors were too many to conceal the influence of climate. --The result of cluster analysis showed that the boundary between BST3-8 and BST3-9 may be the K/E boundary of Baishantou section, and the top of twofold coal were the K/E boundary of Arkhara-Boguchan Coal Mine section which was consistent with accepted conclusion formerly. By contrast of elements contents in dinosaur bones and general organism, in surrounding rock and general sand stone, the regulation of the change of elements contents in dinosaur bones and surrounding rock, we confirmed that dinosaur extinction in Jiayin were relative with the high abnormities of Sr, Ba, Pb, Cr and the low abnormity of Zn, at least, it was them which speeded up dinosaurs extinction. After a series of analysis, we concluded that dinosaurs extinction of this areas tied up with the relative high background values of geo-chemical elements , paleo-climate and disaster incidents. First of all, high background values provided the necessary condition for the accumulation of the elements. Secondly, the drought climate adverse to the survival of dinosaurs, and led them to extinct gradually. finally, disaster incidents, the eruption of volcano or the collision of aerolites, made them exit this planet.
Resumo:
云南金顶铅锌矿是镉元素富集区,采矿活动导致镉元素释放出来进入地表环境造成镉污染。矿区不同岩石中镉分布差异比较大,围岩中镉含量范围在50×10^-6-650×10^-6之间,平均310×10^-6,原生矿中镉含量范围14×10^-6-2800×10^-6,平均767×10^-6,氧化矿中镉含量范围110×10^-6-8200×10^-6,平均1661×10^-6,其平均值最高。氧化矿是镉元素的主要载体和释放源。淋滤实验表明矿石易氧化而释放出镉等有害元素,滤出元素可以迅速发生沉淀或被沉淀物包裹,其能力表现为Zn〉Pb〉Cd。研究结果表明,矿区下游江河段水体中隔的平均值为15.7μg/L,悬浮物中镉平均值为49.3 mg/kg,沉积物中镉平均值为203.7 mg/kg。矿区富镉岩石和矿物的自然风化是造成江水体和沉积物中镉污染的直接原因,对流域水生态环境造成潜在危害.
Resumo:
硫酸盐还原菌(SRB)混合菌群分泌的胞外聚合物(EPS)能有效地吸附水溶液中的Zn^2+在初始p(Zn^2+)为500mg/L时,EPS对Zn^2+的吸附量达到326.07mg/g,g。Freundlich方程能相对较好地拟合实验所得吸附数据。SRB混合菌群分泌的EPS的IR分析表明,EPS吸附Zn^2+起主要作用的官能团是多聚糖C-O-C,羧基和脂类官能团,而蛋白质和多聚糖的-OH对Zn^2+的结合能力有限.
Resumo:
以0.01mol·L^-1 CaCl2和0.005mol·L^-1 1DTPA作为提取剂,用简化的3步连续提取法对贵州省赫章县土法炼锌污染土壤中Zn、Cd的形态进行了分析.结果显示,污染土壤中Zn、Cd主要以残渣态的形式存在,CaCl2提取态和DTPA提取态Zn、CA平均仅占全量的0.63%、3.91%和lO.94%、10.13%.土壤中不同形态Zn、Cd含量与玉米中Zn、CA含量的相关分析结果显示,CaCl2提取态金属与玉米中金属含量投有显著的相关关系,而DTPA提取态、残渣态以及总量Zn、Cd与玉米根、茎叶中Zn、Cd含量显著正相关.这些结果表明CaCl2提取态Zn、Cd对土壤中该元素的植物有效态可能不具重要贡献,而DTPA提取态金属和金属总量在一定程度上能作为评价土壤中元素植物有效性的标准.
Resumo:
通过对贵阳市红枫湖中溶解态锌、颗粒态锌及颗粒态锌中不同结合形态的研究,探讨了红枫湖生物地球化学过程中锌的主要赋存形态与季节性变化规律。结果发现,红枫湖总锌的质量浓度为0.72ug·L^-1~13.04ug·L^-1,污染较轻。红枫湖南湖总锌全年均高于北湖,主要是位于南部的羊昌河输入所致。红枫湖水体中锌的主要赋存形式是溶解态锌(占总锌的70%1;颗粒态中AEC(吸附态-可交换态-碳酸盐结合态)结合态锌是最主要的赋存形式(占颗粒态锌的72%)。溶解态锌含量夏季低而冬季高,主要是因为夏季生物吸收与吸附、以及冬季沉积物孔隙水向上覆水体的释放。颗粒物中有机结合态锌的变化主要受湖泊藻类繁殖的影响