999 resultados para Thermal-spike
Resumo:
The thermal stability of electron beam deposited TiO2 monolayers and TiO2/SiO2 high reflectors (HR) during 300 to 1100 degrees C annealing is studied. It is found that the optical loss of film increases with the increase in annealing temperature, due to the phase change, crystallisation and deoxidising of film. Scattering loss dominates the optical property degradation of film below 900 degrees C, while the absorption is another factor at 1100 degrees C. The increase in refractive index and decrease in physical thickness of TiO2 layer shift the spectra of HR above 900 degrees C. The possible crack mechanism on the surface of HR during annealing is discussed. Guidance for application on high temperature stable optical coatings is given.
Resumo:
The initiation of laser damage within optical coatings can be better understood by thermal-mechanical modeling of coating defects. The result of this modeling shows that a high-temperature rise and thermal stress can be seen just inside the nodular defect compared to surrounding coating layers. The temperature rise and thermal stress tend to increase with seed diameter. Shallower seed tend to cause higher temperature rise and greater thermal stress. There is a critical seed depth at which thermal stress is largest. The composition of the seed resulting from different coating-material emission during evaporation can affect the temperature rise and thermal stress distribution.
Resumo:
From 2001 to 2006, 71 pop-up satellite archival tags (PSATs) were deployed on five species of pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxyrinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark [C. longimanus]; and bigeye thresher [Alopias superciliosus]) in the central Pacific Ocean to determine species-specific movement patterns and survival rates after release from longline fishing gear. Only a single postrelease mortality could be unequivocally documented: a male blue shark which succumbed seven days after release. Meta-analysis of published reports and the current study (n=78 reporting PSATs) indicated that the summary effect of postrelease mortality for blue sharks was 15% (95% CI, 8.5–25.1%) and suggested that catch-and-release in longline fisheries can be a viable management tool to protect parental biomass in shark populations. Pelagic sharks displayed species-specific depth and temperature ranges, although with significant individual temporal and spatial variability in vertical movement patterns, which were also punctuated by stochastic events (e.g., El Niño-Southern Oscillation). Pelagic species can be separated into three broad groups based on daytime temperature preferences by using the unweighted pair-group method with arithmetic averaging clustering on a Kolmogorov-Smirnov Dmax distance matrix: 1) epipelagic species (silky and oceanic whitetip sharks), which spent >95% of their time at temperatures within 2°C of sea surface temperature; 2) mesopelagic-I species (blue sharks and shortfin makos, which spent 95% of their time at temperatures from 9.7° to 26.9°C and from 9.4° to 25.0°C, respectively; and 3) mesopelagic-II species (bigeye threshers), which spent 95% of their time at temperatures from 6.7° to 21.2°C. Distinct thermal niche partitioning based on body size and latitude was also evident within epipelagic species.
Resumo:
postprint