915 resultados para Subclavian Artery
Resumo:
Deficient trophoblast invasion and spiral artery remodeling are associated with pregnancy complications such as pre-eclampsia (PE) and fetal growth restriction (FGR). Using a model in which pregnant Wistar rats are given daily, low-dose, injections of bacterial lipopolysaccharide (LPS; 10 – 40 µg/kg) on gestational days (GD) 13.5 – 16.5, our group has shown that abnormal maternal inflammation is causally linked to shallow trophoblast invasion, deficient spiral artery remodeling, and altered utero-placental hemodynamics leading to FGR/PE; these alterations were shown to be mediated by TNF-a. The present research evaluated certain consequences of decreased placental perfusion; this was accomplished by examining placental alterations indicative of decreased placental perfusion. Additionally, the role of glyceryl trinitrate (GTN) was determined as a potential therapeutic to prevent the consequences of decreased placental perfusion. Results indicated that dams experiencing heightened maternal inflammation showed significantly greater expression of hypoxia-inducible factor-1a (HIF-1a) and nitrotyrosine, both of which are markers of decreased perfusion and oxidative/nitrosative stress. Contrary to expectations, inflammation did not appear to affect nitric oxide (NO) bioavailability, as revealed by a lack of change in placental or plasma levels of cyclic guanosine monophosphate (cGMP). However, continuous transdermal administration of GTN (25 µg/hr) on GD 12.5 – 16.5 prevented the accumulation of HIF-1a and nitrotyrosine in placentas from LPS-treated rats. These results support the concept that maternal inflammation contributes to placental hypoxia and oxidative/nitrosative stress. Additionally, they indicate that GTN has potential applications in the treatment and/or prevention of pregnancy complications associated with abnormal maternal inflammation.
Resumo:
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), plays important roles in normal vascular homeostasis, and reduced endothelial NO bioactivity is an important feature of vascular disease states. The Glu298Asp (G894T) polymorphic variant of eNOS has been associated with vascular disease, but functional data are lacking. Accordingly, we examined the relationships between NO-mediated endothelial function, the presence of the eNOS Glu298Asp variant, and clinical risk factors for atherosclerosis. Endothelium-dependent vasorelaxations to different agonists were determined in human saphenous veins obtained from patients with coronary artery disease and identified risk factors (n = 104). Patients were genotyped for the eNOS G894T polymorphism. Nitric oxide-mediated endothelial vasorelaxations were highly variable between patients. Reduced vasorelaxations were associated with increased number of clinical risk factors for atherosclerosis (r = - 0.54, P
Resumo:
Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5) M. Suramin, in concentrations to 10(-3) M, had no such effect. The Cibacron blue response was abolished in Ca2+-free physiological salt solution, suggesting that it was acting on a Ca2+-dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4) M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large-conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+-dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.
Resumo:
Objective: Prolonged limb ischemia followed by reperfusion (I/R) is associated with a systemic inflammatory response syndrome and remote acute lung injury. Ischemic preconditioning (IPC), achieved with repeated brief periods of I/R before the prolonged ischemic period, has been shown to protect skeletal muscle against ischemic injury. The aim of this study was to ascertain whether IPC of the limb before I/R injury also attenuates systemic inflammation and acute lung injury in a fully resuscitated porcine model of hind limb I/R. Methods: This prospective, randomized, controlled, experimental animal study was performed in a university-based animal research facility with 18 male Landrace pigs that weighed from 30 to 35 kg. Anesthetized ventilated swine were randomized (n = 6 per group) to three groups: sham-operated control group, I/R group (2 hours of bilateral hind limb ischemia and 2.5 hours of reperfusion), and IPC group (three cycles of 5 minutes of ischemia/5 minutes of reperfusion immediately preceding I/R). Plasma was separated and stored at -70° C for later determination of plasma tumor necrosis factor-a and interleukin-6 with bioassay as markers of systemic inflammation. Circulating phagocytic cell priming was assessed with a whole blood chemiluminescence assay. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were markers of edema and neutrophil sequestration, respectively. The alveolar-arterial oxygen gradient and pulmonary artery pressure were indices of lung function. Results: In a porcine model, bilateral hind limb (I/R) injury significantly increased plasma interleukin-6 concentrations, circulating phagocytic cell priming, and pulmonary leukosequestration, edema, and impaired gas exchange. Conversely, pigs treated with IPC before the onset of the ischemic period had significantly reduced interleukin-6 levels, circulating phagocytic cell priming, and experienced significantly less pulmonary edema, leukosequestration, and respiratory failure. Conclusion: Lower limb IPC protects against systemic inflammation and acute lung injury in lower limb I/R injury.
Resumo:
OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI21) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI21 is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI21 at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at -70 degrees C for later determination of plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar-arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI21 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI21 ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome.
Resumo:
Previous structure-activity studies have shown that the disulphide bridge of calcitonin gene-related peptide (CGRP) is important for the highly potent, CGRP receptor-mediated effects of this peptide. In this study penicillamine (Pen) was substituted for one or both of the cysteinyl residues to determine conformational and topographical properties of the disulphide bridge favourable for binding to CGRP receptors and/or receptor activation. Pen constrains the conformational flexibility of disulphide bridges in other peptides. Binding affinities were measured using a radioligand binding assay with membranes prepared from pig coronary arteries and I-125-h-alpha-CGRP. Functional effects were characterized using a previously reported pig coronary artery relaxation bioassay. The binding affinity of [Pen(2)]h-alpha-CGRP was not significantly different from that of h-alpha-CGRP. All other analogues showed reduced affinity for CGRP receptors. [Pen(2)]h-alpha-CGRP also caused relaxation of coronary arteries. The remaining analogues either caused relaxation with significantly reduced potency or failed to relax the arteries at concentrations up to 1 x 10(-5) M. All analogues that did not relax coronary arteries contained a D-Pen in position 7 and inhibited CGRP-induced relaxation. [D-Pen(2,7)]h-alpha- CGRP was the most potent antagonist with a K-B value of 630 nM. This affinity is similar to that of the classical CGRP receptor antagonist, h-alpha-CGRP(8-37), on these arteries (K-B, 212 nM). These studies show that modifying the topography of the disulphide bridge can cause large and variable effects on ligand binding and activation of CGRP receptors. The contribution of position 7 to the conformation and topography of the disulphide bridge of h-alpha-CGRP is crucial to the future design of agonists of CGRP receptors. Furthermore, position 7 is important for the development of new CGRP receptor antagonists with structures based on the whole sequence of h-alpha-CGRP.
Resumo:
A structure-activity study was performed to examine the role of position 14 of human alpha-calcitonin gene-related peptide (h-alpha-CGRP) in activating the CGRP receptor. Interestingly, position 14 of h-alpha-CGRP contains a glycyl residue and is part of an alpha-helix spanning residues 8-18. Analogues [Ala(14)]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, [Asn(14)]-h-alpha-CGRP, and [Pro(14)]-h-alpha-CGRP were synthesized by solid phase peptide methodology and purified by RP-HPLC. Secondary structure was measured by circular dichroism spectroscopy. Agonist activities were determined as the analogues' ability to stimulate amylase secretion from guinea pig pancreatic acini and to relax precontracted porcine coronary arteries. Analogues [Ala(1)4]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, and [Asn(14)]-h-alpha-CGRP, all containing residues with a high helical propensity in position 14, were potent full agonists compared to h-alpha-CGRP in both tissues. Interestingly, replacement of Gly(14) of h-alpha-CGRP with these residues did not substantially increase the helical content of these analogues. [Pro(14)]-h-alpha-CGRP, predictably, has significantly lower helical content and is a 20-fold less potent agonist on coronary artery, known to contain CGRP-1 receptor subtypes, and an antagonist on pancreatic acini, known to contain CGRP-2 receptor subtypes. In conclusion, the residue in position 14 plays a structural role in stabilizing the alpha-helix spanning residues 8-18. The alpha-helix is crucial for maintaining highly potent agonist effects of h-alpha-CGRP at CGRP receptors. The wide variety of functional groups that can be tolerated in position 14 with no substantial modification of agonist effects suggests the residue in this position is not in contact with the CGRP receptor. [Pro(14)]-h-alpha-CGRP may be a useful pharmacological tool to distinguish between CGRP-1 and CGRP-2 receptor subtypes.
Resumo:
Radiation therapy is a treatment modality routinely used in cancer management so it is not unexpected that radiation-inducible promoters have emerged as an attractive tool for controlled gene therapy. The human tissue plasminogen activator gene promoter (t-PA) has been proposed as a candidate for radiogenic gene therapy, but has not been exploited to date. The purpose of this study was to evaluate the potential of this promoter to drive the expression of a reporter gene, the green fluorescent protein (GFP), in response to radiation exposure. METHODS: To investigate whether the promoter could be used for prostate cancer gene therapy, we initially transfected normal and malignant prostate cells. We then transfected HMEC-1 endothelial cells and ex vivo rat tail artery and monitored GFP levels using Western blotting following the delivery of single doses of ionizing radiation (2, 4, 6 Gy) to test whether the promoter could be used for vascular targeted gene therapy. RESULTS: The t-PA promoter induced GFP expression up to 6-fold in all cell types tested in response to radiation doses within the clinical range. CONCLUSIONS: These results suggest that the t-PA promoter may be incorporated into gene therapy strategies driving therapeutic transgenes in conjunction with radiation therapy.
Resumo:
Synthetic bradykinin antagonist peptides/peptoids have been powerful tools for delineating the roles of kinins in both normal physiology and in pathological states. Here, we report the identification of a novel, naturally occurring bradykinin B2 receptor antagonist peptide, helokinestatin, isolated and structurally characterized from the venoms of helodermatid lizards—the Gila monster (Heloderma suspectum) and the Mexican beaded lizard (Heloderma horridum). The primary structure of the peptide was established by a combination of microsequencing and mass spectroscopy as Gly-Pro-Pro-Tyr-Gln-Pro-Leu-Val-Pro-Arg (Mr 1122.62). A synthetic replicate of helokinestatin was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle, mediated by the B2 receptor sub-type, in a dose-dependent manner. Natural selection, that generates functional optimization of predatory reptile venom peptides, can potentially provide new insights for drug lead design or for normal physiological or pathophysiological processes.
Resumo:
Objective: To determine the clinical effect of dietary supplementation with low-dose ?-3-polyunsaturated fatty acids on disease activity and endothelial function in patients with systemic lupus erythematosus. Methods: A 24-week randomised double-blind placebo-controlled parallel trial of the effect of 3 g of ?-3-polyunsaturated fatty acids on 60 patients with systemic lupus erythematosus was performed. Serial measurements of disease activity using the revised Systemic Lupus Activity Measure (SLAM-R) and British Isles Lupus Assessment Group index of disease activity for systemic lupus erythematosus (BILAG), endothelial function using flow-mediated dilation (FMD) of the brachial artery, oxidative stress using platelet 8-isoprostanes and analysis of platelet membrane fatty acids were taken at baseline, 12 and 24 weeks. Results: In the fish oil group there was a significant improvement at 24 weeks in SLAM-R (from 9.4 (SD 3.0) to 6.3 (2.5), p
Resumo:
Histidine is a naturally occurring amino acid with antioxidant properties, which is present in low amounts in tissues throughout the body. We recently synthesized and characterized histidine analogues related to the natural dipeptide carnosine, which selectively scavenge the toxic lipid peroxidation product 4-hydroxynonenal (HNE). We now report that the histidine analogue histidyl hydrazide is effective in reducing brain damage and improving functional outcome in a mouse model of focal ischemic stroke when administered intravenously at a dose of 20 mg/kg, either 30 min before or 60 min and 3 h after the onset of middle cerebral artery occlusion. The histidine analogue also protected cultured rat primary neurons against death induced by HNE, chemical hypoxia, glucose deprivation, and combined oxygen and glucose deprivation. The histidine analogue prevented neuronal apoptosis as indicated by decreased production of cleaved caspase-3 protein. These findings suggest a therapeutic potential for HNE-scavenging histidine analogues in the treatment of stroke and related neurodegenerative conditions.
Resumo:
The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.
Resumo:
Oxidative stress plays an important role in the development of cardiac remodeling after myocardial infarction (MI), but the sources of oxidative stress remain unclear. We investigated the role of Nox2-containing reduced nicotinamide-adenine dinucleotide phosphate oxidase in the development of cardiac remodeling after MI. Adult Nox2(-/-) and matched wild-type (WT) mice were subjected to coronary artery ligation and studied 4 weeks later. Infarct size after MI was similar in Nox2(-/-) and WT mice. Nox2(-/-) mice exhibited significantly less left ventricular (LV) cavity dilatation and dysfunction after MI than WT mice (eg, echocardiographic LV end-diastolic volume: 75.7+/-5.8 versus 112.4+/-12.3 microL; ejection fraction: 41.6+/-3.7 versus 32.9+/-3.2%; both P
Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
Resumo:
Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Moller K. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol 297: R1283-R1292, 2009. First published September 2, 2009; doi: 10.1152/ajpregu.00366.2009.-This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O-2). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100 beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P
Resumo:
Skin kininogens from bombinid toads encode an array of bradykinin-related peptides and one such kininogen from Bombina maxima also encodes the potent bradykinin B2-receptor antagonist, kinestatin. In order to determine if the skin secretion of the closely-related toad, Bombina orientalis, contained a bradykinin inhibitory peptide related to kinestatin, we screened reverse phase HPLC fractions of defensive skin secretion using a rat tail artery smooth muscle preparation. A fraction was located that inhibited bradykinin-induced relaxation of the preparation and this contained a peptide of 3198.5 Da as determined by MALDI-TOF MS. Automated Edman degradation of this peptide established the identity of a 28-mer as: DMYEIKGFKSAHGRPRVCPPGEQCPIWV, with a disulfide-bridge between Cys18 and Cys24 and an amidated C-terminal Val residue. Peptide DV-28 was found to correspond to residues 133–160 of skin pre-kininogen-2 of B. orientalis that also encodes two copies of (Thr6)-bradykinin. The C-terminal residue, Gly-161, of the precursor open-reading frame, acts as the C-terminal amide donor of mature DV-28. DV-28 amide thus represents a new class of bradykinin inhibitor peptide from amphibian skin secretion.