977 resultados para Structural evolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results: We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion: The pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphitic carbon nitride (g-C3N4), as a promising metal-free catalyst for photo-catalytic and electrochemical water splitting, has recently attracted tremendous research interest. However, the underlying catalytic mechanism for the hydrogen evolution reaction (HER) is not fully understood. By using density functional theory calculations, here we have established that the binding free energy of hydrogen atom (ΔGH∗0) on g-C3N4 is very sensitive to mechanical strain, leading to substantial tuning of the HER performance of g-C3N4 at different coverages. The experimentally-observed high HER activity in N-doped graphene supported g-C3N4 (Zheng et al., 2014) is actually attributed to electron-transfer induced strain. A more practical strategy to induce mechanical strain in g-C3N4 is also proposed by doping a bridge carbon atom in g-C3N4 with an isoelectronic silicon atom. The calculated ΔGH∗0 on the Si-doped g-C3N4 is ideal for HER. Our results indicate that g-C3N4 would be an excellent metal-free mechano-catalyst for HER and this finding is expected to guide future experiments to efficiently split water into hydrogen based on the g-C3N4 materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model of the entire casting process starting from the mould filling stage to complete solidification is presented. The model takes into consideration any phase change taking place during the filling process. A volume of fluid method is used for tracking the metal–air interface during filling and an enthalpy based macro-scale solidification model is used for the phase change process. The model is demonstrated for the case of filling and solidification of Pb–15 wt%Sn alloy in a side-cooled two-dimensional rectangular cavity, and the resulting evolution of a mushy region and macrosegregation are studied. The effects of process parameters related to filling, namely degree of melt superheat and filling velocity on macrosegregation in the cavity, are also investigated. Results show significant differences in the progress of the mushy zone and macrosegregation pattern between this analysis and conventional analysis without the filling effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a new consumer product and its release to market is typically an expensive and risky process. It is estimated that up to 80% of all new products fail in the marketplace (Savoia, 2014). The consequences of failure can be ruinous for a manufacturer both financially and in terms of brand reputation. So even small improvements in success prediction have the potential to save money, effort and brand reputation. This paper proposes an approach where the history and evolution of a product is mapped and analyzed. The results of the analysis can then be used to inform design decisions. This paper will also demonstrate the similarities between biological evolution and the evolution of consumer products. Using the existing structure and terminology of biological evolution allows us to focus on the aspects of innovations that have led to success and those that have led to failure. This paper uses the case study of the wristwatch and its development over 100 years. The analysis of this leads to recommendations for contemporary “smartwatches.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab2) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab2 was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab2 resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab2, which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab2. It provides evidence that Ab2 is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eclogites from paragneiss in the Korean Peninsula are characterized by a peak pressure assemblage of garnet + omphacite + quartz + rutile, that is overprinted by multiphase symplectites involving augite, amphibole, orthopyroxene, ilmenite and plagioclase and by a similar high-pressure assemblage with a pronounced absence of the omphacite component in clinopyroxene formed during the peak and orthopyroxene in the retrograde stage. Eclogites were metamorphosed at a minimum pressures of not, vert, similar 20–23 kbar at temperatures of not, vert, similar 840–1000 °C, equivalent to a crustal depth of not, vert, similar 70–75 km, whereas high-pressure granulite in Late Paleozoic rocks underwent metamorphic conditions of not, vert, similar 18–19 kbar at not, vert, similar 950 °C with a minimum crustal depth of not, vert, similar 60–65 km. The presence of the eclogites and high-pressure granulite suggests deep-seated subduction of crustal complexes with metamorphism at different crustal levels. The eclogites were exhumed quickly resulting in near- isothermal decompression. On the other hand, the multistage exhumation of the high-pressure granulites suggests retrograde overprinting after initial decompression. The similarity of these petrological characteristics, metamorphic conditions and also the regional structural styles with those of the Sulu belt (China) strongly suggests the existence of a Permo-Triassic Alpine-type “Korean collision belt” in Far East Asia. This model provides a better understanding of the paleogeograpic evolution of Permo-Triassic East Asia, including a robust tectonic correlation of the Korean collision belt with the Qinling–Dabie–Sulu collision belt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper two nonlinear model based control algorithms have been developed to monitor the magnetorheological (MR) damper voltage. The main advantage of the proposed algorithms is that it is possible to directly monitor the voltage required to control the structural vibration considering the effect of the supplied and commanded voltage dynamics of the damper. The efficiency of the proposed techniques has been shown and compared taking an example of a base isolated three-storey building under a set of seismic excitations. Comparison of the performances with a fuzzy based intelligent control algorithm and a widely used clipped optimal strategy has also been shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress-strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young's modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former's Young's modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure-function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-resolution magnetic resonance (MR) imaging has been used for MR imaging-based structural stress analysis of atherosclerotic plaques. The biomechanical stress profile of stable plaques has been observed to differ from that of unstable plaques; however, the role that structural stresses play in determining plaque vulnerability remains speculative. Methods: A total of 61 patients with previous history of symptomatic carotid artery disease underwent carotid plaque MR imaging. Plaque components of the index artery such as fibrous tissue, lipid content and plaque haemorrhage (PH) were delineated and used for finite element analysis-based maximum structural stress (M-C Stress) quantification. These patients were followed up for 2 years. The clinical end point was occurrence of an ischaemic cerebrovascular event. The association of the time to the clinical end point with plaque morphology and M-C Stress was analysed. Results: During a median follow-up duration of 514 days, 20% of patients (n=12) experienced an ischaemic event in the territory of the index carotid artery. Cox regression analysis indicated that M-C Stress (hazard ratio (HR): 12.98 (95% confidence interval (CI): 1.32-26.67, pZ0.02), fibrous cap (FC) disruption (HR: 7.39 (95% CI: 1.61e33.82), p Z 0.009) and PH (HR: 5.85 (95% CI: 1.27e26.77), p Z 0.02) are associated with the development of subsequent cerebrovascular events. Plaques associated with future events had higher M-C Stress than those which had remained asymptomatic (median (interquartile range, IQR): 330 kPa (229e494) vs. 254 kPa (166-290), p Z0.04). Conclusions: High biomechanical structural stresses, in addition to FC rupture and PH, are associated with subsequent cerebrovascular events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Because many acute cerebral ischemic events are caused by rupture of vulnerable carotid atheroma and subsequent thrombosis, the present study used both idealized and patient-specific carotid atheromatous plaque models to evaluate the effect of structural determinants on stress distributions within plaque. Methods and Results Using a finite element method, structural analysis was performed using models derived from in vivo high-resolution magnetic resonance imaging (MRI) of carotid atheroma in 40 non-consecutive patients (20 symptomatic, 20 asymptomatic). Plaque components were modeled as hyper-elastic materials. The effects of varying fibrous cap thickness, lipid core size and lumen curvature on plaque stress distributions were examined. Lumen curvature and fibrous cap thickness were found to be major determinants of plaque stress. The size of the lipid core did not alter plaque stress significantly when the fibrous cap was relatively thick. The correlation between plaque stress and lumen curvature was significant for both symptomatic (p = 0.01; correlation coefficient: 0.689) and asymptomatic patients (p = 0.01; correlation coefficient: 0.862). Lumen curvature in plaques of symptomatic patients was significantly larger than those of asymptomatic patients (1.50±1.0mm-1 vs 1.25±0.75 mm-1; p = 0.01). Conclusion Specific plaque morphology (large lumen curvature and thin fibrous cap) is closely related to plaque vulnerability. Structural analysis using high-resolution MRI of carotid atheroma may help in detecting vulnerable atheromatous plaque and aid the risk stratification of patients with carotid disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: More than half of all cerebral ischemic events are the result of rupture of extracranial plaques. The clinical determination of carotid plaque vulnerability is currently based solely on luminal stenosis; however, it has been increasingly suggested that plaque morphology and biomechanical stress should also be considered. We used finite element analysis based on in vivo magnetic resonance imaging (MRI) to simulate the stress distributions within plaques of asymptomatic and symptomatic individuals. Methods: Thirty nonconsecutive subjects (15 symptomatic and 15 asymptomatic) underwent high-resolution multisequence in vivo MRI of the carotid bifurcation. Stress analysis was performed based on the geometry derived from in vivo MRI of the carotid artery at the point of maximal stenosis. The finite element analysis model considered plaque components to be hyperelastic. The peak stresses within the plaques of symptomatic and asymptomatic individuals were compared. Results: High stress concentrations were found at the shoulder regions of symptomatic plaques, and the maximal stresses predicted in this group were significantly higher than those in the asymptomatic group (508.2 ± 193.1 vs 269.6 ± 107.9 kPa; P = .004). Conclusions: Maximal predicted plaque stresses in symptomatic patients were higher than those predicted in asymptomatic patients by finite element analysis, suggesting the possibility that plaques with higher stresses may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, biomechanical stress analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma. It may help in the identification of patients with asymptomatic carotid atheroma at greatest risk of developing symptoms or mild-to-moderate symptomatic stenoses, which currently fall outside current clinical guidelines for intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals often behave in a profligate fashion and decimate the populations of plants and animals they depend upon. They may, however, evolve prudent behaviour under special conditions, namely when such prudence greatly enhances the success of populations that are not too prone to invasions by profligate individuals. Cultural evolution in human societies can also lead to the adoption of prudent practices under similar conditions. These are more likely to be realized in stable environments in which the human populations tend to grow close to the carrying capacity, when the human groups are closed, and when the technology is stagnant. These conditions probably prevailed in the hunter—gatherer societies of the tropics and subtropics, and led to the adoption of a number of socially imposed restraints on the use of plant and animal resources. Such practices were rationalized in the form of Nature-worship. The Indian caste society became so organized as to fulfill these conditions, and gave rise to two religions, Buddhism and Jainism, which emphasize compassion towards all forms of life. The pastoral nomads of the middle east, on the other hand, lived in an environment which militated against prudence, and these societies gave rise to religions like Christianity, which declared war on nature. As the ruling elite and state have grown in power, they have tried to wrest control of natural resources from the local communities. This has sometimes resulted in conservation and prudent use under guidance from the state, but has often led to conflicts with local populations to the detriment of prudent behaviour. Modern technological progress has also often removed the need for conservation, as when availability of coal permitted the deforestation of England. While modern scientific understanding has led to a better appreciation of the need for prudence, the prevailing social and economic conditions often militate against any implementation of the understanding, as is seen from the history of whaling. However, the imperative for survival of the poor from the Third-World countries may finally bring about conditions in which ecological prudence may once again come to dominate human cultures as it might once have done with stable societies of hunter—gatherers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.