974 resultados para Sol-gel, dip-coating, erbium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

$La_{0.7}Ca_{0.3}MnO_3$ samples were prepared in nano- and polycrystalline forms by sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susceptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetocaloric and transport properties are reported for novel poly- and nanocrystalline double composite manganites, La 0.8Sr 0.2MnO 3/La 0.7Ca 0.3MnO 3, prepared by the sol-gel method. Magnetic field dependence of magnetic entropy change is found to be stronger for the nano- than the polycrystalline composite. The remarkable broadening of the temperature interval, where the magnetocaloric effect occurs in poly- and nanocrystalline composites, causes the relative cooling power (RCP(S)) of the nanocrystalline composite to be reduced by only 10 compared to the Sr based polycrystalline phase. The RCP(S) of the polycrystalline composite becomes remarkably enhanced. The low temperature magnetoresistance is enhanced by 5 for the nanostructured composite. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.7Ca0.3MnO3 samples were prepared in nano- and polycrystalline forms by the sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susceptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature. © 2007 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution processed aluminum-doped zinc oxide (AZO)/multi-walled carbon nanotube (MWCNT) nanocomposite thin film has been developed offering simultaneously high optical transparency and low electrical resistivity, with a conductivity figure of merit (σDC/σopt) of ~75-better than PEDOT:PSS and many graphene derivatives. The reduction in sheet resistance of thin films of pristine MWCNTs is attributed to an increase in the conduction pathways within the sol-gel derived AZO matrix and reduced inter-MWCNT contact resistance. Films have been extensively characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffractometry (XRD), photoluminescence (PL), and ultraviolet-visible (UV-vis) spectroscopy. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8GHz), allowing low-cost programmable high-frequency resonators. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexagonally ordered arrays of magnetic FePt nanoparticles on Si substrates are prepared by a self assembly of diblock copolymer PS-b-P2VP in toluene, a dip coating process and finally plasma treatment. The as-treated FePt nanoparticles are covered by an oxide layer that can be removed by a 40 s Ar+ sputtering. The effects of the sequence of adding salts on the composition distribution are revealed by x-ray photoelectron spectroscopy measurements. No particle agglomeration is observed after 600 degrees C annealing for the present ordered array of FePt nanoparticles, which exhibits advantages in patterning FePt nanoparticles by a micellar method. Moreover, magnetic properties of the annealed FePt nanoparticles at room temperature are investigated by a vibrating sample magnetometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zn2SiO4:Mn2+, Zn2SiO4:Eu3+ and Zn2SiO4:Mn2+ Eu3+ phosphors were prepared by a sol-gel process and their luminescence spectra were investigated. The emission bands from intra-ion transitions of Mn2+ and Eu3+ samples were studied as a function of pressure. The pressure coefficient of Mn2+ emission was found to be -25.3 +/- 0.5 and -28.5 +/- 0.9 meV/GPa for Zn2SiO4:Mn2+ and Zn2SiO4:Mn2+ Eu3+, respectively. The Eu3+ emission shows only weak pressure dependence. The pressure dependences of the Mn2+ and Eu3+ emissions in Zn2SiO4:Mn2+ Eu3+ are slightly different from that in Zn2SiO4:Mn2+ and Zn2SiO4:Eu3+ samples, which can be attributed to the co-doping of Mn2+ and Eu3+ ions. The Mn2+ emission in the two samples, however, exhibits analogous temperature dependence and similar luminescence lifetimes, indicating no energy transfer from Mn2+ to Eu3+ occurs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SnO2 material prepared by sol-gel method was modified by thiourea solution in different concentrations (0.05, 0.1 and 0.2 mol dm(-3)). Then the structure and the average grain size of the SnO2 material were investigated by X-ray power diffraction. In order to understand the nature of the species on the SnO2 surfaces, the thermal gravimetric and differential thermal analyzer (TG-DTA) and IR spectra of these modified and unmodified sample were taken. The result indicates that the stability of oxygen adsorbed on thiourea-modified surface was improved and the amount of surface hydroxyl groups adsorbed on this grain surface was decreased. The thiourea adsorbed on SnO2 grain surface is translated to SO42- after sintered at 600 degrees C. SO42- species stabilize the resistance of the SnO2 sensor. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low cost Si-based tunable InGaAs RCE photodetectors operating at 1.3similar to1.6 mum were fabricated using sol-gel bonding. A tuning range of 14.5 nm, a quantum efficiency of 44% at 1476 nm and a 3-dB bandwidth of 1.8 GHz were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. In our preceding study, we investigated in detail, the effect of doping mode on the photocatalytic activity of TiO2 films showing that Mn non-uniform doping can greatly enhance the activity. In this study we looked at the effect of doping concentration on the photocatalytic activity of the TiO2 films. In this paper, the thin films were characterized by UV-vis spectrophotometer and electrochemical workstation. The activity of the photocatalyst was also evaluated by photocatalytic degradation rate of aqueous methyl orange under UV radiation. The results illustrate that the TiO2 thin film doped by Mn non-uniformly at the optimal dopant concentration (0.7 at %) is of the highest activity, and on the contrary, the activity of those doped uniformly is decreased. As a comparison, in 80 min, the degradation rate of methyl orange is 62 %, 12 % and 34 % for Mn non-uniform doping film (0.7 at %), the uniform doping film (0.7 at %) and pure titanium dioxide film, respectively. We have seen that, for the doping and the pure TiO2 films, the stronger signals of open circuit potential and transient photocurrent, the better photocatalytic activity. We also discusse the effect of dopant concentration on the photocatalytic activity of the TiO2 films in terms of effective separation of the photon-generated carriers in the semiconductor. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.