973 resultados para Scientific computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biggest challenge in conservation biology is breaking down the gap between research and practical management. A major obstacle is the fact that many researchers are unwilling to tackle projects likely to produce sparse or messy data because the results would be difficult to publish in refereed journals. The obvious solution to sparse data is to build up results from multiple studies. Consequently, we suggest that there needs to be greater emphasis in conservation biology on publishing papers that can be built on by subsequent research rather than on papers that produce clear results individually. This building approach requires: (1) a stronger theoretical framework, in which researchers attempt to anticipate models that will be relevant in future studies and incorporate expected differences among studies into those models; (2) use of modern methods for model selection and multi-model inference, and publication of parameter estimates under a range of plausible models; (3) explicit incorporation of prior information into each case study; and (4) planning management treatments in an adaptive framework that considers treatments applied in other studies. We encourage journals to publish papers that promote this building approach rather than expecting papers to conform to traditional standards of rigor as stand-alone papers, and believe that this shift in publishing philosophy would better encourage researchers to tackle the most urgent conservation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them also involves complicated workflows implemented as shell scripts. A new grid middleware system that is well suited to climate modelling applications is presented in this paper. Grid Remote Execution (G-Rex) allows climate models to be deployed as Web services on remote computer systems and then launched and controlled as if they were running on the user's own computer. Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model. G-Rex has a REST architectural style, featuring a Java client program that can easily be incorporated into existing scientific workflow scripts. Some technical details of G-Rex are presented, with examples of its use by climate modellers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.