915 resultados para SOLUTE DIFFUSION
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The release and diffusion of hydroxyl ions (OH-) of calcium hydroxide (Ca(OH)2)-based intracanal medications may be affected by the association with other substances. The aim of this study was to evaluate the diffusion of OH- ions through root dentin by the medications: G1, Ca(OH)2/saline; G2, Calen; G3, Calen/camphorated p-monochlorophenol (CMCP); and G4, Calen/0.4% chlorhexidine (CHX). Root canals from bovine teeth were prepared in a standardized manner. A cavity until dentin was prepared in the middle third of the root surface of each specimen. The external surface of the root was made impermeable using a layer of adhesive, except the prepared cavity. The root canals were filled with different medications, and teeth were individually stored in flasks containing 10 ml distilled water at 37 degrees C. The water pH was measured at 1, 3, 7, 14, 21, 30, and 60 days. Data obtained were subjected to anova and Tukeys tests. Increase in pH was observed at 3 days for Calen/CHX and from 7 to 14 days for the other mixtures. Calen paste promoted pH increase up to 21 days. Calen/CMCP had the highest pH up to 21 days, and all groups had similar results at 30 days. At 60 days, the greatest pH values were observed for Calen/CMCP and Calen alone. All different formulations of Ca(OH)2-based medications tested release hydroxyl ion that can diffuse through the dentin.
Resumo:
The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics(R)) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.
Resumo:
Some photosensitizers (PSs) used for PACT (Antimicrobial Photodynamic Therapy) show an affinity for bacterial walls and can be photo-activated to cause the desired damage. However, on dentine bacterias may be less susceptible to PACT as a result of limited penetration of the PS. The aim of this study was to evaluate the diffusion of one PS based on hematoporphyrin on dentine structures. Twelve bovine incisors were used. Class III cavities (3 x 3 x 1 mm) were prepared on the mesial or distal surfaces using a diamond bur. Photogem (R) solution at 1 mg/mL (10 uL for each cavity) was used. The experimental Groups were divided according to thickness of dentine remaining and etched or no-etched before the PS application. The fluorescence excitation source was a VelScope (R) system. For image capture a scientific CCD color camera PixelFly (R) was coupled to VelScope. For image acquisition and processing, a computational routine was developed at Matlab (R). Fick's Law was used to obtain the average diffusion coefficient of PS. Differences were found between all Groups. The longitudinal temporal diffusion was influenced by the different times, thickness and acid etching.
Resumo:
The CLSI M100-S19 document has recommended the disuse of vancomycin disks for staphylococci and informed that studies on the action of teicoplanin in disk-diffusion testing should be performed. We describe the comparison of two methods, disk diffusion and broth microdilution, for determining teicoplanin susceptibility in clinical isolates of staphylococci. Overall results showed an aggregation rate of 96.8%; Staphylococcus aureus showed total agreement while S. epidermidis showed 93.8% of agreement. According to these local results, disk diffusion can still be employed to teicoplanin susceptibility determination for staphylococci in our institution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mass transfer during osmotic dehydration of apple slices immersed in 40, 50 and 60% (w/w) aqueous sucrose solutions was investigated to evaluate the influence of solution concentration on diffusivities. In the mathematical model, the diffusion coefficients were functions of the local water and sucrose concentration. The mass transfer equations were, simultaneously, solved for water and sucrose using an implicit numerical method. Material coordinates following the shrinkage of the solid were used. The predicted concentration profiles were integrated and compared to experimental data, showing a reasonable agreement with the measured data. on average, the effective diffusion coefficients for water and sucrose decreased as the osmotic solution concentration increased; that is the behavior of the binary coefficients in water-sucrose solutions. However, the diffusivities expressed as a function of the local concentration in the slices varied between the treatments. Water diffusion coefficients showed a remarkable variation throughout the slice and unusual behavior, which was associated to the cellular structure changes observed in tissue immersed in osmotic solutions. Cell structure changes occurred in different ways: moderate plasmolysis at 40%, accentuated plasmolysis at 50% and generalized damage of the cells at 60%. Intact vacuoles were observed after a long time of exposure (30 h) to 40 and 50% solutions. Effects of the concentration on tissue changes make it difficult to generalize the behavior of diffusion coefficients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In literature the phenomenon of diffusion has been widely studied, however for nonextensive systems which are governed by a nonlinear stochastic dynamic, there are a few soluble models. The purpose of this study is to present the solution of the nonlinear Fokker-Planck equation for a model of potential with barrier considering a term of absorption. Systems of this nature can be observed in various chemical or biological processes and their solution enriches the studies of existing nonextensive systems.
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.