960 resultados para SLOW


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of buffer areas in forested catchments has been actively researched during the last 15 years; but until now, the research has mainly concentrated on the reduction of sediment and phosphorus loads, instead of nitrogen (N). The aim of this thesis was to examine the use of wetland buffer areas to reduce the nitrogen transport in forested catchments and to investigate the environmental impacts involved in their use. Besides the retention capacity, particular attention was paid to the main factors contributing to the N retention, the potential for increased N2O emissions after large N loading, the effects of peatland restoration for use as buffer areas on CH4 emissions, as well as the vegetation composition dynamics induced by the use of peatlands as buffer areas. To study the capacity of buffer areas to reduce N transport in forested catchments, we first used large artificial loadings of N, and then studied the capacity of buffer areas to reduce ammonium (NH4-N) export originating from ditch network maintenance areas in forested catchments. The potential for increased N2O emissions were studied using the closed chamber technique and a large artificial N loading at five buffer areas. Sampling for CH4 emissions and methane-cycling microbial populations were done on three restored buffer areas and on three buffers constructed on natural peatlands. Vegetation composition dynamics was studied at three buffer areas between 1996 and 2009. Wetland buffer areas were efficient in retaining inorganic N from inflow. The key factors contributing to the retention were the size and the length of the buffer, the hydrological loading and the rate of nutrient loading. Our results show that although the N2O emissions may increase temporarily to very high levels after a large N loading into the buffer area, the buffer areas in forested catchments should be viewed as insignificant sources of N2O. CH4 fluxes were substantially higher from buffers constructed on natural peatlands than from the restored buffer areas, probably because of the slow recovery of methanogens after restoration. The use of peatlands as buffer areas was followed by clear changes in plant species composition and the largest changes occurred in the upstream parts of the buffer areas and the wet lawn-level surfaces, where the contact between the vegetation and the through-flow waters was closer than for the downstream parts and dry hummock sites. The changes in the plant species composition may be an undesired phenomenon especially in the case of the mires representing endangered mire site types, and therefore the construction of new buffer areas should be primarily directed into drained peatland areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conditions under which the hydromagnetic interface waves can exist at a magnetic interface is deduced. Using these conditions, it is shown that a slow interface wave with a phase velocity about 5Km/s and a fast interface wave with a phase velocity 6.5 to 8km/s at the photospheric level can exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of NADH by decavanadate, a polymeric form vanadate with a cage-like structure, in presence of rat liver microsomes followed a biphasic pattern. An initial slow phase involved a small rate of oxygen uptake and reduction of 3 of the 10 vanadium atoms. This was followed by a second rapid phase in which the rates of NADH oxidation and oxygen uptake increased several-fold with a stoichiometry of NADH: O2 of 1ratio1. The burst of NADH oxidation and oxygen uptake which occurs in phosphate, but not in Tris buffer, was prevented by SOD, catalase, histidine, EDTA, MnCl2 and CuSO4, but not by the hydroxyl radical quenchers, ethanol, methanol, formate and mannitol. The burst reaction is of a novel type that requires the polymeric structure of decavanadate for reduction of vanadium which, in presence of traces of H2O2, provides a reactive intermediate that promotes transfer of electrons from NADH to oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of noncoding sequences, or introns, from the eukaryotic messenger RNA precursors is catalyzed by a ribonucleoprotein complex known as the spliceosome. In most eukaryotes, two distinct classes of introns exist, each removed by a specific type of spliceosome. The major, U2-type introns account for over 99 % of all introns, and are almost ubiquitous. The minor, U12-type introns are found in most but not all eukaryotes, and reside in conserved locations in a specific set of genes. Due to their slow excision rates, the U12-type introns are expected to be involved in the regulation of the genes containing them by inhibiting the maturation of the messenger RNAs. However, little information is currently available on how the activity of the U12-dependent spliceosome itself is regulated. The levels of many known splicing factors are regulated through unproductive alternative splicing events, which lead to inclusion of premature STOP codons, targeting the transcripts for destruction by the nonsense-mediated decay pathway. These alternative splice sites are typically found in highly conserved sequence elements, which also contain binding sites for factors regulating the activation of the splice sites. Often, the activation is achieved by binding of products of the gene in question, resulting in negative feedback loops. In this study, I show that U11-48K, a protein factor specific to the minor spliceosome, specifically recognizes the U12-type 5' splice site sequence, and is essential for proper function of the minor spliceosome. Furthermore, the expression of U11-48K is regulated through a feedback mechanism, which functions through conserved sequence elements that activate alternative splicing and nonsense-mediated decay. This mechanism is conserved from plants to animals, highlighting both the importance and early origin of this mechanism in regulating splicing factors. I also show that the feedback regulation of U11-48K is counteracted by a component of the major spliceosome, the U1 small nuclear ribonucleoprotein particle, as well as members of the hnRNP F/H protein family. These results thus suggest that the feedback mechanism is finely tuned by multiple factors to achieve precise control of the activity of the U12-dependent spliceosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some recent observations at Pic-du-Midi (Mulleret al., 1992a) suggest that the photospheric footpoints of coronal magnetic field lines occasionally move rapidly with typical velocities of the order 3 km s–1 for about 3 or 4 min. We argue that such occasional rapid footpoint motions could have a profound impact on the heating of the quiet corona. Qualitative estimates indicate that these occasional rapid motions can account for the entire energy flux needed to heat the quiet corona. We therefore carry out a mathematical analysis to study in detail the response of a vertical thin flux tube to photospheric footpoint motions in terms of a superposition of linear kink modes for an isothermal atmosphere. We find the resulting total energy that is asymptotically injected into an isothermal atmosphere (i.e., an atmosphere without any back reflection). By using typical parameter values for fast and slow footpoint motions, we show that, even if the footpoints spend only 2.5% of the time undergoing rapid motions, still these rapid motions could be more efficient in transporting energy to the corona than the slow motions that take place most of the time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fallibility is inherent in human cognition and so a system that will monitor performance is indispensable. While behavioral evidence for such a system derives from the finding that subjects slow down after trials that are likely to produce errors, the neural and behavioral characterization that enables such control is incomplete. Here, we report a specific role for dopamine/basal ganglia in response conflict by accessing deficits in performance monitoring in patients with Parkinson's disease. To characterize such a deficit, we used a modification of the oculomotor countermanding task to show that slowing down of responses that generate robust response conflict, and not post-error per se, is deficient in Parkinson's disease patients. Poor performance adjustment could be either due to impaired ability to slow RT subsequent to conflicts or due to impaired response conflict recognition. If the latter hypothesis was true, then PD subjects should show evidence of impaired error detection/correction, which was found to be the case. These results make a strong case for impaired performance monitoring in Parkinson's patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2-3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean. Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline. The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of a convective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Room-temperature Raman spectra of LiRbSO4 were studied as a function of pressure up to 170 kbar for two different orientations of the crystal. Four pressure-induced phase transitions at about 2, 17, 32 and 57 kbar were observed. The transitions at 17 and 57 kbar have slow kinetics, taking about 4 h for their completion. These phase transitions are associated with the orientations of the SO4 ions in the unit cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of 2-amino-6-methylpyridine, 2-picoline and 4-picoline as donors with iodine, 7,7',8,8'-tetracyanoquinodimethane,2,3-dichloro-5,6-dicyano-1,4-benzoquinone, p-chloranil, o-chloranil, 2,4,7-trinitro-9-fluorenone and 2,4,5,7-tetranitro-9-fluorenone as acceptors has been studied by measuring visible and ultraviolet spectra. Infrared, electron paramagnetic and nuclear magnetic resonance spectra have also been obtained. Kinetic parameters have been derived. The results indicate that the charge transfer interaction occurs through the formation of free radicals which is followed by a slow reaction to give a diamagnetic product. However, with iodine, the charge transfer complex formation occurs without the formation of free radicals. The donor site is inferred to be the lone pair of electrons of the amino nitrogen of 2-amino-6-methylpridine whereas for 2- and 4-picolines, the preferred site is lone pair of electrons on the pyridine nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shear alignment of an initially disordered lamellar phase is examined using lattice Boltzmann simulations of a mesoscopic model based on a free-energy functional for the concentration modulation. For a small shear cell of width 8 lambda, the qualitative features of the alignment process are strongly dependent on the Schmidt number Sc = nu/D (ratio of kinematic viscosity and mass diffusion coefficient). Here, lambda is the wavelength of the concentration modulation. At low Schmidt number, it is found that there is a significant initial increase in the viscosity, coinciding with the alignment of layers along the extensional axis, followed by a decrease at long times due to the alignment along the flow direction. At high Schmidt number, alignment takes place due to the breakage and reformation of layers because diffusion is slow compared to shear deformation; this results in faster alignment. The system size has a strong effect on the alignment process; perfect alignment takes place for a small systems of width 8 lambda and 16 lambda, while a larger system of width 32 lambda does not align completely even at long times. In the larger system, there appears to be a dynamical steady state in which the layers are not perfectly aligned-where there is a balance between the annealing of defects due to shear and the creation due to an instability of the aligned lamellar phase under shear. We observe two types of defect creation mechanisms: the buckling instability under dilation, which was reported earlier, as well as a second mechanism due to layer compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coalescence processes are investigated during phase separation in a density-matched liquid mixture (partially deuterated cyclohexane and methanol) under near-critical conditions. As a result of the interplay between capillary and lubrication forces, ''nose'' coalescence appears to be always associated with the slow growth of isolated droplets (exponent almost-equal-to 1/3), whereas ''dimple'' coalescence corresponds to the fast growth of interconnected droplets (exponent almost-equal-to 1). At each stage of growth, the distribution of droplets trapped during dimple coalescence is reminiscent of all of the previous coalescence events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated that solvation dynamics in many common dipolar liquids contain an initial, ultrafast Gaussian component which may contribute even more than 60% to the total solvation energy. It is also known that adiabatic electron transfer reactions often probe the high-frequency components of the relevant solvent friction (Hynes, J. T. J. Phys. Chem. 1986, 90, 3701). In this paper, we present a theoretical study of the effects of the ultrafast solvent polar modes on the adiabatic electron transfer reactions by using the formalism of Hynes. Calculations have been carried out for a model system and also for water and acetonitrile. It is found that, in general, the ultrafast modes can greatly enhance the rate of electron transfer, even by more than an order of magnitude, over the rate obtained by using only the slow overdamped modes usually considered. For water, this acceleration of the rate can be attributed to the high-frequency intermolecular vibrational and librational modes. For a weakly adiabatic reaction, the rate is virtually indistinguishable from the rate predicted by the Marcus transition state theory. Another important result is that even in this case of ultrafast underdamped solvation, energy diffusion appears to be efficient so that electron transfer reaction in water is controlled essentially by the barrier crossing dynamics. This is because the reactant well frequency is-directly proportional to the rate of the initial Gaussian decay of the solvation time correlation function. As a result, the value of the friction at the reactant well frequency rarely falls below the value required for the Kramers turnover except when the polarizability of the water molecules may be neglected. On the other hand, in acetonitrile, the rate of electron transfer reaction is found to be controlled by the energy diffusion dynamics, although a significant contribution to the rate comes also from the barrier crossing rate. Therefore, the present study calls for a need to understand the relaxation of the high-frequency modes in dipolar liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .