919 resultados para Radius of Convexity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method to study the air bubble dynamics and to burst the air bubbles formed on the electrode– electrolyte interface in a parallel gate electrode fluidic channel is demonstrated. Upon application of a voltage across the electrodes,volume of water contained between them begins to electrolyzing depending on the conductivity, as well as it boils due to heating effect. This results in bubble formation within. These bubbles grow in radius with higher potential difference applied across the electrodes. As an approach towards removing these bubbles, an alternating current is applied at low potential difference of a 5 volts and high frequency at few megahertz. The alternating electric field had a heating effect on the bubbles where the energy input due to current heats up water and bursts the bubble. The bubbles of size up to 480μm were burst at 2500 V/m using this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetoplasmadynamic thrusters are known to enter a strongly unstable regime, calledas onset in the literature, under high specific impulse operation. This paper probes the early signs of onset in relatively moderate specific impulse operation by a single fluid plasma thruster simulation. The procedure involves solving the combined Maxwell’s-Navier-Stokes equation, with an onset criterion of radial current reaching close to zero values near the electrodes. Thruster parameters are varied starting from voltage potential, plasma temperature and cathodic radius. Onset curves are plotted which can provide important engine-specific information in order to understand the onset performance of the plasma thruster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effect of local defects, viz., cracks and cutouts on the buckling behaviour of functionally graded material plates subjected to mechanical and thermal load is numerically studied. The internal discontinuities, viz., cracks and cutouts are represented independent of the mesh within the framework of the extended finite element method and an enriched shear flexible 4-noded quadrilateral element is used for the spatial discretization. The properties are assumed to vary only in the thickness direction and the effective properties are estimated using the Mori-Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation theory. The influence of various parameters, viz., the crack length and its location, the cutout radius and its position, the plate aspect ratio and the plate thickness on the critical buckling load is studied. The effect of various boundary conditions is also studied. The numerical results obtained reveal that the critical buckling load decreases with increase in the crack length, the cutout radius and the material gradient index. This is attributed to the degradation in the stiffness either due to the presence of local defects or due to the change in the material composition. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°91°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earth- quakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website http://www.civil.iisc.ernet.in/*sreevals/resource.htm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the recent reports pertaining to novel optical properties of ultra-small quantum dots (QDs) (r <2 nm), this nanomaterial is of relevance to both technology and science. However it is well known that in these size regimes most chalocogenide QD dispersions are unstable. Since applications often require use of QD dispersions (e.g. for deployment on a substrate), stabilizing these ultra-small particles is of practical relevance. In this work we demonstrate a facile, green, solution approach for synthesis of stable, ultra-small ZnO QDs having radius less than 2 nm. The particle size is calculated using Brits' equation and confirmed by transmission electron micrographs. ZnO QDs reported remain stable for > 120 days in ethanol (at similar to 298-303 K). We report digestive ripening (DR) in TEA capped ZnO QDs; this occurs rapidly over a short duration of 5 min. To explain this observation we propose a suitable mechanism based on the Lee's theory, which correlates the tendency of DR with the observed zeta potentials of the dispersed medium. To the best of our knowledge this is the (i) first report on DR in oxide QDs, as well as the first direct experimental verification of Lee's theory, and (ii) most rapid DR reported so far. The facile nature of the method presented here makes ultra-small ZnO readily accessible for fundamental exploration and technologically relevant applications. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E similar to 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasigeostrophic turbulence on a beta-plane with a finite deformation radius is studied numerically, with particular emphasis on frequency and combined wavenumber-frequency domain analyses. Under suitable conditions, simulations with small-scale random forcing and large-scale drag exhibit a spontaneous formation of multiple zonal jets. The first hint of wave-like features is seen in the distribution of kinetic energy as a function of frequency; specifically, for progressively larger deformation scales, there are systematic departures in the form of isolated peaks (at progressively higher frequencies) from a power-law scaling. Concomitantly, there is an inverse flux of kinetic energy in frequency space which extends to lower frequencies for smaller deformation scales. The identification of these peaks as Rossby waves is made possible by examining the energy spectrum in frequency-zonal wavenumber and frequency-meridional wavenumber diagrams. In fact, the modified Rhines scale turns out to be a useful measure of the dominant meridional wavenumber of the modulating Rossby waves; once this is fixed, apart from a spectral peak at the origin (the steady jet), almost all the energy is contained in westward propagating disturbances that follow the theoretical Rossby dispersion relation. Quite consistently, noting that the zonal scale of the modulating waves is restricted to the first few wavenumbers, the energy spectrum is almost entirely contained within the corresponding Rossby dispersion curves on a frequency-meridional wavenumber diagram. Cases when jets do not form are also considered; once again, there is a hint of Rossby wave activity, though the spectral peaks are quite muted. Further, the kinetic energy scaling in frequency domain follows a -5/3 power-law and is distributed much more broadly in frequency-wavenumber diagrams. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsar IGR J16393-4643 belongs to a class of highly absorbed supergiant high-mass X-ray binaries (HMXBs), characterized by a very high column density of absorbing matter. We present the results of simultaneous broad-band pulsation and spectrum analysis from a 44-ks Suzaku observation of the source. The orbital intensity profile created with the Swift Burst Alert Telescope (Swift-BAT) light curve shows an indication of IGR J16393-4643 being an eclipsing system with a short eclipse semi-angle theta(E) similar to 17 degrees. For a supergiant companion star with a 20-R-circle dot radius, this implies an inclination of the orbital plane in the range 39 degrees-57 degrees, whereas for a main-sequence B star as the companion with a 10-R-circle dot radius, the inclination of the orbital plane is in the range 60 degrees-77 degrees. Pulse profiles created for different energy bands have complex morphology, which shows some energy dependence and increases in pulse fraction with energy. We have also investigated broad-band spectral characteristics, phase-averaged spectra and resolving the pulse phase into peak and trough phases. The phase-averaged spectrum has a very high N-H(similar to 3 x 10(23) cm(-2)) and is described by a power law (Gamma similar to 0.9) with a high-energy cut-off above 20 keV. We find a change in the spectral index in the peak and trough phases, implying an underlying change in the source spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Termites, herbivores and fire are recognized as major guilds that structure woody plant communities in African savanna and woodland ecosystems. An understanding of their interaction is crucial to design appropriate management regimes. The aim of this study was to evaluate the long-term impacts of herbivore, fire and termite activities on regeneration of trees. Permanent experimental quadrats were established in 1992 in the Sudanian woodland of Burkina Faso subjected to grazing by livestock and annual early fire and the control. Within the treatment quadrats, an inventory of the woody undergrowth community was conducted on termitaria occupied by Macrotermes subhyalinus, extended termitosphere (within 5 m radius from the mound base) and adjacent area (beyond 5 m from the mound base). Hierarchical analysis was performed to determine significant differences in species richness, abundance and diversity indices among vegetation patches within fire and herbivory treatments. Grazed quadrats had significantly (P < 0.001) more species and stem density of woody undergrowth than non-grazed quadrats but maintained similar level of species richness and stem density of woody undergrowth on termitaria. There were not significant differences (P>0.05) in species richness and stem density between burnt and unburnt quadrats. Termitaria supported a highly diverse woody undergrowth with higher stem density than either the extended termitosphere or rest of quadrats. The density of woody undergrowth was significantly related with mature trees of selected species on termitaria (R-2 = 0.593; P<0.001) than that on the extended termitosphere (R-2 = 0.333; P<0.001) and adjacent area (R-2 = 0.197; P<0.001). It can be concluded that termites facilitate the regeneration of woody species while grazing and annual early fire play a minor role in the regeneration of woody species. The current policy that prohibits grazing should be revised to accommodate the interests of livestock herders. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of a single bubble with a single vortex ring in water has been studied experimentally. Measurements of both the bubble dynamics and vorticity dynamics have been done to help understand the two-way coupled problem. The circulation strength of the vortex ring (Gamma) has been systematically varied, while keeping the bubble diameter (D-b) constant, with the bubble volume to vortex core volume ratio (V-R) also kept fixed at about 0.1. The other important parameter in the problem is a Weber number based on the vortex ring strength. (We = 0.87 rho(Gamma/2 pi a)(2)/(sigma/D-b); a = vortex core radius, sigma = surface tension), which is varied over a large range, We = 3-406. The interaction between the bubble and ring for each of the We cases broadly falls into four stages. Stage I is before capture of the bubble by the ring where the bubble is drawn into the low-pressure vortex core, while in stage II the bubble is stretched in the azimuthal direction within the ring and gradually broken up into a number of smaller bubbles. Following this, in stage III the bubble break-up is complete and the resulting smaller bubbles slowly move around the core, and finally in stage IV the bubbles escape. Apart from the effect of the ring on the bubble, the bubble is also shown to significantly affect the vortex ring, especially at low We (We similar to 3). In these low-We cases, the convection speed drops significantly compared to the base case without a bubble, while the core appears to fragment with a resultant large decrease in enstrophy by about 50 %. In the higher-We cases (We > 100), there are some differences in convection speed and enstrophy, but the effects are relatively small. The most dramatic effects of the bubble on the ring are found for thicker core rings at low We (We similar to 3) with the vortex ring almost stopping after interacting with the bubble, and the core fragmenting into two parts. The present idealized experiments exhibit many phenomena also seen in bubbly turbulent flows such as reduction in enstrophy, suppression of structures, enhancement of energy at small scales and reduction in energy at large scales. These similarities suggest that results from the present experiments can be helpful in better understanding interactions of bubbles with eddies in turbulent flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an architecture for dramatically enhancing the stress bearing and energy absorption capacities of a polymer based composite. Different weight fractions of iron oxide nano-particles (NPs) are mixed in a poly(dimethylesiloxane) (PDMS) matrix either uniformly or into several vertically aligned cylindrical pillars. These composites are compressed up to a strain of 60% at a strain rate of 0.01 s(-1) following which they are fully unloaded at the same rate. Load bearing and energy absorption capacities of the composite with uniform distribution of NPs increase by similar to 50% upon addition of 5 wt% of NPs; however, these properties monotonically decrease with further addition of NPs so much so that the load bearing capacity of the composite becomes 1/6th of PDMS upon addition of 20 wt% of NPs. On the contrary, stress at a strain of 60% and energy absorption capacity of the composites with pillar configuration monotonically increase with the weight fraction of NPs in the pillars wherein the load bearing capacity becomes 1.5 times of PDMS when the pillars consisted of 20 wt% of NPs. In situ mechanical testing of composites with pillars reveals outward bending of the pillars wherein the pillars and the PDMS in between two pillars, located along a radius, are significantly compressed. Reasoning based on effects of compressive hydrostatic stress and shape of fillers is developed to explain the observed anomalous strengthening of the composite with pillar architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed steady and unsteady experimental measurements and analysis were performed on a Single stage Transonic Axial Compressor with asymmetric rotor tip clearance for studying the compressor stall phenomena. The installed compressor had asymmetric tip clearance around the rotor casing varying from about 0.65mm to 1.25mm. A calibrated 5-hole aerodynamic probe was traversed radially at exit of rotor and showed the characteristics of increased flow angle at lower mass flow rates for all the speeds. Mach number distribution and boundary layer effects were also clearly captured. Unsteady measurements for velocity were carried out to study the stall cell behavior using a single component calibrated hotwire probe oriented in axial and tangential directions for choke/free flow and near stall conditions. The hotwire probe was traversed radially across the annulus at inlet to the compressor and showed that the velocity fluctuations were dissimilar when probe was aligned axial and tangential to the flow. Averaged velocities across the annulus showed the reduction in velocity as stall was approached. Axial mean flow velocity decreased across the annulus for all the speeds investigated. Tangential velocity at free flow condition was higher at the tip region due to larger radius. At stall condition, the tangential velocity showed decreased velocities at the tip and slightly increased velocities at the hub section indicating that the flow has breakdown at the tip region of the blade and fluid is accelerated below the blockage zone. The averaged turbulent intensity in axial and tangential flow directions increased from free flow to stall condition for all compressor rated speeds. Fast Fourier Transform (FFT) of the raw signals at stall flow condition showed stall cell and its corresponding frequency of occurrence. The stalling frequency of about half of rotational speed of the rotor along with large tip clearance suggests that modal type stall inception was occurring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the direct correspondence between Co band ferromagnetism and structural parameters in the pnictide oxides RCoPO for different rare-earth ions (R = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and ab initio calculations, complementing our results published previously G. Prando et al., Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr), Phys. Rev. B 87, 064401 (2013)]. We find that both the transition temperature to the ferromagnetic phase T-C and the volume of the crystallographic unit cell V are conveniently tuned by the R ionic radius and/or external pressure. We report a linear correlation between T-C and V and our ab initio calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, we show that R ions influence the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic f degrees of freedom, which are only giving a sizable magnetic contribution at much lower temperatures.