944 resultados para Radioisotope scanning.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alginate microspheres are considered a promising material as a drug carrier in bone repair due to excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and non-controllable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), non-mesoporous bioglass (BG) or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyse the composition, structure and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pHs. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/Alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Camera Botanica 1 - testing a design process (unrealised buildings). ---------- Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 1 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design methods were intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 1 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Camera Botanica 2 - testing a design process (unrealised building). Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 2 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design method was intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 2 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural changes in intercalated kaolinite after wet ball-milling were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area (SSA) and Fourier Transform Infrared spectroscopy (FTIR). The X-ray diffraction pattern at room temperature indicated that the intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.42 nm, and with the particle size reduction, the surface area increased sharply with the intercalation and delamination by ball-milling. The wet ball-milling kaolinite after intercalation did not change the structural order, and the particulates have high aspect ratio according SEM images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermogravimetric analysis-mass spectrometry, X-ray diffraction and scanning electron microscopy (SEM) were used to characterize eight kaolinite samples from China. The results show that the thermal decomposition occurs in three main steps (a) desorption of water below 100 °C, (b) dehydration at about 225 °C, (c) well defined dehydroxylation at around 450 °C. It is also found that decarbonization took place at 710 °C due to the decomposition of calcite impurity in kaolin. The temperature of dehydroxylation of kaolinite is found to be influenced by the degree of disorder of the kaolinite structure and the gases evolved in the decomposition process can be various because of the different amount and kinds of impurities. It is evident by the mass spectra that the interlayer carbonate from impurity of calcite and organic carbon is released as CO2 around 225, 350 and 710 °C in the kaolinite samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular mass were used to study the inhibition of calcium oxalate crystallization. The effects of the end-group on crystal speciation and morphology were significant and dramatic, with hexyl-isobutyrate end groups giving preferential formation of calcium oxalate dihydrate (COD) rather than the more stable calcium oxalate monohydrate (COM), while both more hydrophobic end-groups and less-hydrophobic end groups led predominantly to formation of the least thermodynamically stable form of calcium oxalate, calcium oxalate trihydrate. Conversely, molecular mass had little impact on calcium oxalate speciation or crystal morphology. It is probable that the observed effects are related to the rate of desorption of the PAA moiety from the crystal (lite) surfaces and that the results point to a major role for end-group as well as molecular mass in controlling desorption rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium oxalate (CaOX) is the most intractable scale component to remove in sugar mill evaporators by either mechanical or chemical means. The operating conditions of sugar mill evaporators should preferentially favour the formation of the thermodynamically stable calcium oxalate monohydrate (COM), yet analysis of scale deposit from different sugar factories have shown that calcium oxalate dihydrate (COD) is usually the predominant phase, and in some cases is the only hydrate formed. The effects of trans-aconitic, succinic and acetic acids, all of which are present in sugarcane juice, and ethylenediamine tetraacetic acid disodium salt (EDTA) on the growth of CaOX crystals have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TGA). trans-Aconitic acid, which constitutes two-thirds of the organic acid component in sugarcane juice, in the presence of sugar resulted in the formation of COD and COM in a 3:1 ratio. EDTA was the most effective acid to promote the formation of COD followed by trans-aconitic acid, then acetic acid and lastly succinic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.