Improved image contrast of the bone-muscle interface with 3T MRI compared to 1.5T MRI [Abstract]


Autoria(s): Rathnayaka, Kanchana; Coulthard, Alan; Momot, Konstantin I.; Volp, Andrew; Sahama, Tony R.; Schuetz, Michael; Schmutz, Beat
Data(s)

01/08/2010

Resumo

Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/32435/

Relação

http://eprints.qut.edu.au/32435/1/c32435.pdf

http://www.wcb2010.net/

Rathnayaka, Kanchana, Coulthard, Alan, Momot, Konstantin I., Volp, Andrew, Sahama, Tony R., Schuetz, Michael, & Schmutz, Beat (2010) Improved image contrast of the bone-muscle interface with 3T MRI compared to 1.5T MRI [Abstract]. In 6th World Congress on Biomechanics, 1 - 6 August 2010, Suntec Convention Centre, Singapore. (Unpublished)

Direitos

Copyright 2010 [please consult the authors]

Fonte

Faculty of Built Environment and Engineering; Faculty of Science and Technology; Institute of Health and Biomedical Innovation; School of Engineering Systems

Palavras-Chave #090399 Biomedical Engineering not elsewhere classified #3T MRI #Long bones #Image segmentation
Tipo

Conference Paper