996 resultados para RANDOM SEQUENTIAL ADSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Range and load play key roles in the problem of attacks on links in random scale-free (RSF) networks. In this paper we obtain the approximate relation between range and load in RSF networks by the generating function theory, and then give an estimation about the impact of attacks on the efficiency of the network. The results show that short-range attacks are more destructive for RSF networks, and are confirmed numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed oil SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based oil the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of both thiophene and H2S onMo(2)C/Al2O3 catalyst have been studied by in situ FT-IR spectroscopy. CO adsorption was used to probe the surface sites of Mo2C/Al2O3 catalyst under the interaction and reaction of thiophene and H2S. When the fresh Mo2C/Al2O3 catalyst is treated with a thiophene/H-2 mixture above 473 K, hydrogenated species exhibiting IR bands in the regions 2800-3000 cm(-1) are produced on the surface, indicating that thiophene reacts with the fresh carbide catalyst at relatively low temperatures. IR spectra of adsorbed CO on fresh Mo2C/Al2O3 pretreated by thiophene/H-2 at different temperatures clearly reveal the gradual sulfidation of the carbide catalyst at temperatures higher than 473 K, while H2S/H-2 can sulfide the Mo2C/Al2O3 catalyst surface readily at room temperature (RT). The sulfidation of the carbide surface by the reaction with thiophene or H2S maybe the major cause of the deactivation of carbide catalysts in hydrotreating reactions. The surface of the sulfided carbide catalyst can be only partially regenerated by a recarburization using CH4/H-2 at 1033 K. When the catalyst is first oxidized and then recarburized, the carbide surface can be completely reproduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of methanol of low concentration on adsorption and leaching of atrazine and tebuconazole was studied in this paper. The adsorption coefficients and the retardation factors (R-m) of pesticides on EUROSOIL 3# log-linearly decreased as volumetric fraction of methanol (f(c)) was increased in the binary solvent mixtures of methanol and water. These data are consistent with solvophobic theory formerly outlined for describing the adsorption and transport of hydrophobic organic chemicals from mixed solvents. Nevertheless, the adsorption of these pesticides in soil-water system slightly increased when the soil was pre-washed with methanol in comparison with that pre-washed with water (pure water system). Furthermore, their adsorption coefficients were still higher in binary solvent systems with methanol of very low concentrations, i.e. f(c) < 0.03 for atrazine and f(c) < 0.01 for tebuconazole, than those in pure water system. The adsorption coefficients (logK(w)) of atrazine and tebuconazole predicted by solvophobic theory were 0.5792 and 1.6525, respectively, and their experimental logK(w) were 0.3701 and 1.6275 in pure water system. Obviously, the predicted log K-w of the two pesticides was higher than the experimental log K-w in pure water system. The predicted K-w and the retardation factor (R-w) in pure water system by solvophobic theory are thus possibly inaccurate. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum phosphide (MoP) and supported molybdenum phosphide (MoP/gamma-Al2O3) have been prepared by the temperature-programmed reduction method. The surface sites of the MoP/gamma-Al2O3 catalyst were characterized by carbon monoxide (CO) adsorption with in situ Fourier transform infrared (FT-IR) spectroscopy. A characteristic IR band at 2037 cm(-1) was observed on the MoP/gamma-Al2O3 that was reduced at 973 K. This band is attributed to linearly adsorbed CO on Mo atoms of the MoP surface and is similar to IR bands at 2040-2060 cm(-1), which correspond to CO that has been adsorbed on some noble metals, such as platinum, palladium, and rhodium. Density functional calculations of the structure of molybdenum phosphides, as well as CO chemisorption on the MoP(001) surface, have also been studied on periodic surface models, using the generalized gradient approximation (GGA) for the exchange-correlation functional. The results show that the chemisorption of CO on MoP occurred mainly on top of molybdenum, because the bonding of CO requires a localized mininum potential energy. The adsorption energy obtained is DeltaH(ads) approximate to -2.18 eV, and the vibrational frequency of CO is 2047 cm-1, which is in good agreement with the IR result of CO chernisorption on MoP/gamma-Al2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface properties, porosities, and adsorption capacities of activated carbons (AC) are modified by the oxidation treatment using concentrated H2SO4 at temperatures 150-270 degreesC. The modified AC was characterized by N-2 adsorption, base titration, FTIR, and the adsorption of iodine, chlorophenol, methylene blue, and dibenzothiophene. The treatment of AC with concentrated H2SO4 at 250 degreesC greatly increases the mesoporous volume from 0.243 mL/g to 0.452 mL/g, specific surface areas from 393 m(2)/g to 745 m(2)/g, and acidic surface oxygen complexes from 0.071 meq/g to 1.986 meq/g as compared with the unmodified AC. The base titration results indicate that the amount of acidic surface oxygen groups on the modified AC increases with increasing the treatment temperatures and carboxyls and phenols are the most abundant carbon-oxygen functional groups. The carboxyl groups, COO- species, and hydroxyl groups are detected mainly for the sample treated at 250 degreesC. The mesoporous properties of the AC modified by concentrated H2SO4 were further tested by the adsorption of methylene blue and dibenzothiophene. The AC modified by concentrated H2SO4 at 250 degreesC has much higher adsorption capacities for large molecules (e.g., methylene blue and dibenzothiophene) than the unmodified AC but less adsorption capacities for small molecules (e.g., iodine). The adsorption results from aqueous solutions have been interpreted using Freundlich adsorption models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of CO on both nitrided and reduced passivated Mo(2)N catalysts in either alumina supported or unsupported forms was studied by adsorption microcalorimetry and infrared (IR) spectroscopy. The CO is adsorbed on nitrided Mo(2)N catalysts on three different surface sites: 4-fold vacancies, Mo(delta+) ( 0 < delta < 2) and N sites, with differential heats of CO adsorption decreasing in the same order. The presence of the alumina-support affects the energetic distribution of the adsorption sites on the nitrided Mo(2)N, i.e. weakens the CO adsorption strength on the different sites and changes the fraction of sites adsorbing CO in a specific form, revealing that the alumina supported Mo(2)N phase shows lower electron density than pure Mo(2)N. On reduced passivated Mo(2)N catalysts the CO was found to adsorb mainly on Mo(4+) sites, although some slightly different surface Mo(delta+) d (0 < delta < 2) sites are also detected. The nature, density and distribution of surface sites of reduced passivated Mo(2)N/gAl(2)O(3) were similar to those on reduced MoO(3)/gamma-Al(2)O(3).