998 resultados para QUANTUM RODS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal annealing effect on InAs quantum dots grown on vicinal (100) GaAs substrates is studied in comparison with dots on exact (100) GaAs substrates. We find that annealing acts stronger effect on dots with vicinal substrates by greatly accelerating the degradation of material quality. as well as slightly increasing the blueshift of the emission wavelength and the narrowing of PL linewidth. It is attributed to the higher strain in the dots formed on the vicinal substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of the post-growth rapid thermal annealing on optical and electrical properties of InAs/InAlAs/InP quantum wires with various InAs deposited thickness. Quite different annealing behaviors in photoluminescence and dark resistance are observed, which can be attributed to dislocations in samples. After annealing at 800 degrees C, quantum wires still exist in the sample with two monolayer InAs deposited thickness, but the temperature-dependent PL properties are changed greatly due to the intermixing of In/Al atoms. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with higher (42.5%) indium content were successfully grown by molecular-beam epitaxy. The cross-sectional transmission electron microscopy measurements reveal that there are no structural defects in such high indium content QWs. The room-temperature photoluminescence peak intensity of the GaIn0.425NAs/GaAs (6 nm/20 nm) 3QW is higher than, and the full width at half maximum is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality caused by strain compensation effect of introducing N to the high indium content InGaAs epilayer. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phonons of self-assembled InAs/InAlAs/InP quantum wires (QWRs) have been studied by Raman scattering. The QWR LO phonons show an unusual frequency shift with the increase of the InAs deposited thickness due to dislocations. The QWR LO phonons are found to follow the selection rule of the LO phonons in bulk zinc-blende semiconductors. Because of the intermixing of In/Al atoms and the multiplication of dislocations, the post-growth thermal annealing treatment leads to a shift of the QWR LO phonons to lower frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality GaNAs/GaAs quantum wells with high substitutional N concentrations, grown by molecular-beam epitaxy, are demonstrated using a reduced growth rate in a range of 0.125-1 mu m/h. No phase separation is observed and the GaNAs well thickness is limited by the critical thickness. Strong room-temperature photoluminescence with a record long wavelength of 1.44 mu m is obtained from an 18-nm-thick GaN0.06As0.94/GaAs quantum well. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified self-consistent method is introduced for the design of AlxGa1-xN/GaN step quantum well (SQW) with the position and energy-dependent effective mass. The effects of nonparabolicity are included. It is shown that the nonparabolicity effect is minute for the lowest subband energy level and grows in size for the higher subband states. The effects of nonparabolicity have significant influence on the transition energies and the oscillator strengths and should be taken into account in the investigation of the optical transitions. The strong asymmetric property introduced by the step quantum well magnifies the weak intersubband transition from the ground state to the third state (1 -> 3). It is shown that in an appropriate scope, the intersubband transition (1 -> 3) has the comparable oscillator strength with transition from the ground state to the second one (1 -> 2), which suggests the possible application of the two-color photodetectors. The results of this work should provide useful guidance for the design of optically pumped asymmetric quantum well lasers and quantum well infrared photodetectors (QWIPs). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine in terms of exact solutions of the time-dependent Schrodinger equation, the quantum tunnelling process in Bose-Einstein condensates of two interacting species trapped in a double well configuration. Based on the two series of time-dependent SU(2) gauge transformations, we diagonalize the Hamilton operator and obtain analytic time-evolution formulas of the population imbalance and the berry phase. the particle population imbalance (a(L)(+)aL - a(R)(+)a(R)) of species A between the two wells is studied analytically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of dislocations on photoluminescence (PL) of InGaN/GaN multiple quantum wells (MQWs) is investigated by triple-axis x-ray diffraction (TAXRD), transmission electron microscopy (TEM), and PL spectra. The omega scan of every satellite peak by TAXRD is adopted to evaluate the mean screw and edge dislocation densities in MQWs. The results show that dislocations can lead to a reduction of the PL-integrated intensity of InGaN/GaN MQWs under certain conditions, with edge dislocations playing a decisive role. Additionally, the dislocations can broaden the PL peak, but the effect becomes evident only under the condition when the interface roughness is relatively low. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the material growth and device performance characterization of a strain-compensated In0.54Ga0.46As/In0.51Al0.49As quantum cascade laser at lambda similar to 8 mu m. For 2 mu s pulse at a 5 kHz repetition rate, laser action is achieved up to room temperature (30 degrees C). The tuning coefficient d lambda/dT is 1.37 nm K-1 between 83 K and 163 K and 0.60 nm K-1 in the range from 183 K to 303 K. The peak output power is reported to be similar to 11.3 mW per facet at 293 K and the corresponding threshold current density is 5.69 kA cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs quantum dots (QDs) are grown on the cleaved edge of an InxGa1-xAs/GaAs supperlattice experimentally and a good linear alignment of these QDs on the surface of an InxGa1-xAs layer has been realized. The modulation effects of periodic strain on the substrate are investigated theoretically using a kinetic Monte Carlo method. Our results show that a good alignment of QDs can be achieved when the strain energy reaches 2% of the atomic binding energy. The simulation results are in excellent qualitative agreement with our experiments. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy Delta(c)=25 meV, the dark excitons appear when the radius is smaller than 25.85 A in the absence of external magnetic field. This result is more consistent with the experimental results reported by Efros [Phys. Rev. B 54, 4843 (1996)]. It is found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of external magnetic field and increase with the increase of magnetic field, in agreement with the experimental results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.