969 resultados para Pulsed electric acoustic technique
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
Accurate mass flow measurement is very important in various monitoring and control applications. This paper proposes a novel method of fluid flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump. The pressure drop due to the flow is balanced by a feedback control loop. This is a null-deflection type of measurement. As the insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. The implementation and design of such a unit are discussed. The system is modeled and simulated using the bond graph technique and it is experimentally validated. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
For hybrid electric vehicles the batteries and the drive dc-link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies and the dc-link is at higher voltage to have higher efficiency on the motor side. Therefore a power interface between the batteries and the drive's dc-link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery and grid to battery. This paper proposes a multi power port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining any gain, wide load variations, lower output current ripple and capability of parallel battery energy due to the modular structure. The development and testing of a bi-directional fly-back DC-DC converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for DC link voltage regulation. The experimental results are presented to show the working of the proposed converter.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
High temperature load controlled fatigue, hot tensile and accelerated creep properties of thermal barrier coated (TBC) Superni C263 alloy used as a candidate material in combustor liner of aero engines are highlighted in this paper. Acoustic emission technique has been utilised to characterise the ductile-brittle transition teperature the bond coat. Results revealed that the DBTT (ductile to brittle transition temperature) of this bond coat is around 923 K, which is in close proximity to the value reported for CoCrAlY type of bond coat. Finite element technique, used for analysing the equivalent stresses in the bond coat well within the elastic limit, revealed the highest order of equivalent stress at 1073 K as the bond coat is ductile above 923 K. The endurance limit in fatigue and the life of TBC coated composite under accelerated creep conditions are substantially higher than those of the substrate material. Fractographic features at high stresses under fatigue showed intergranular cleavage whereas those at low stresses were transgranular and ductile in nature. Delamination of the bond coat and spallation of the TBC at high stresses during fatigue was evident. Unlike in the case of fatigue, the mode of fracture in the substrate at very high stresses was transgranular whereas that at low stresses was intergranular in creep.
Resumo:
Males of several acoustically communicating orthopteran species form spatially and temporally structured choruses. We investigated whether male field crickets of the species Plebeiogryllus guttiventris formed choruses in the field. Males formed spatial aggregations and showed fidelity to a calling site within a night, forming stable choruses. Within aggregations, the acoustic ranges of males overlapped considerably. We tested whether males within hearing range of each other interacted acoustically. The chirps of simultaneously calling males were aphasic with respect to each other and showed no significant alternation or synchrony of calls. Some individuals changed temporal features of their calling songs such as chirp durations and chirp rates in response to a simultaneously calling neighbour. The implications of these results for female mate choice are discussed
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Resumo:
The dielectric response of pulsed laser ablated barium strontium titanate thin films were studied as a function of frequency and ambient temperature (from room temperature to 320 degrees C) by employing impedance spectroscopy. Combined modulus and impedance spectroscopic plots were used to study the response of the film, which in general may contain the grain, grain boundary, and the electrode/film interface as capacitive elements. The spectroscopic plots revealed that the major response was due to the grains, while contributions from the grain boundary or the electrode/film interface was negligible. Further observation from the complex impedance plot showed data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the bulk grains. Conductivity plots against frequency at different temperatures suggested a response obeying the 'universal power law'. The value of the activation energies computed from the Arrhenius plots of both ac and dc conductivities with 1000/T were 0.97 and 1.04 eV, respectively. This was found to be in excellent agreement with published literature, and was attributed to the motion of oxygen vacancies within the bulk. (C) 2000 American Institute of Physics. [S0021-8979(00)02801-2].
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.
Resumo:
The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.
Resumo:
A simple, sufficiently accurate and efficient method for approximate solutions of the Falkner-Skan equation is proposed here for a wide range of the pressure gradient parameter. The proposed approximate solutions are obtained utilising a known solution of another differential equation.