903 resultados para Proton Conductivity
Resumo:
The thermal properties of plums (Prunus domestica) and prunes were investigated in the moisture content of 14.2-80.4% (wet basis) near room temperature (approximately 28 degrees C). The apparent density of the fruits increased from 1042.9 to 1460.0 kg/m(3), and the bulk density increased from 706.6 to 897.5 kg/m(3) as the plums were dried, following classical empirical models as a function of moisture content. It was found that specific heat, effective thermal diffusivity, and effective thermal conductivity of the prunes increased with the moisture content of the samples, which can be represented by using different empirical models.
Resumo:
The thermal conductivity of several commercial ZnO-based varistor systems was determined based on the laser-pulse method, a technique that proved extremely useful and easy to apply. Using this technique, the thermal conductivity was found to be dependent on the microstructural features of the devices, involving the mean grain size and phase composition. Among the phases existing in commercial ZnO-based varistors, ZniSb2O12 and Bi2O3 were found to contribute strongly to the thermal conductivity of the devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Despite the great importance of ion transport, most of the widely accepted models and theories are valid only in the not very practical limit of low concentrations. Aiming to extend the range of applicability to moderate concentrations, a number of modified models and equations (some approximate, some fundamented on different assumptions, and some just empirical) have been reported. In this work, a general treatment for the electrical conductivity of ionic solutions has been developed, considering the electrical conductivity as a transport phenomenon governed by dissipation and feedback. A general expression for the dependence of the specific conductivity on the solution viscosity (and indirectly on concentration), from which the whole conductivity curve can be obtained, has been derived. The validity of this general approach is demonstrated with experimental results taken from the literature for aqueous and nonaqueous solutions of electrolytes.
Resumo:
Gigahertz conductivity of pressed pellets of ClO4--doped poly( 3-methylthiophene) can be readily obtained from the asymmetry ratio (A / B) of the electron spin resonance line using Dyson's theory. The measurements were performed in three different frequencies, 1.3, 9.4, and 35 GHz. The temperature dependence of the gigahertz conductivity is sensitive to the heating rate, probably due to the ordering of the randomly assembled anions. (C) 1994 Academic Press, Inc.
Resumo:
The electrical characteristics of oxidized poly(thionaphtheneindole) were investigated as a function of ambient relative humidity (r.h.). The current flowing through a pressed pellet of material between two massive gold electrodes plotted against voltage gives a wave-shaped curve with a halfwave potential at V = similar to 3 V. The current recorded at 4 V (plateau of the wave) is a sigmoidal function of r.h, with the inflexion point at similar to 60%. An interpretation of these findings is given, based on the influence of water on the dielectric constant of the material and on acid-base equilibrium between poly(thionaphtheneindole) and water, from which protons are produced. The behaviour of poly (thionaphtheneindole) as the active component of an amperometric humidity sensor is also reported.
Resumo:
Field-dependent conductivity at low electric fields was observed from low to room temperature in pressed pellets of doped poly(3-methylthiophene). The room temperature data showed good agreement with Bardeen's theory of charge-density wave depinning and the values of the parameters obtained are consistent with a strong electron-phonon interaction as expected for quasi-one dimensional systems. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Density, heat capacity and thermal conductivity of liquid egg products, such as egg white, egg yolk, whole egg and various white and yolk blends, were determined as affected by temperature and water content ranging from 273 to 311 K and 51.8 to 88.2% (mass), respectively. Polynomial models fitted the experimental data very well, showing a linear relationship both for temperature and water content. (c) 2005 Published by Elsevier Ltd.
Resumo:
Er-doped SnO2 thin films, obtained by sol-gel-dip-coating technique, were submitted to excitation with the 4th harmonic of a Nd:YAG laser (266 nm), at low temperature, and a conductivity decay is observed when the illumination is removed. This decay is modeled by considering a thermally activated cross section of an Er-related trapping center. Besides, grain boundary scattering is considered as dominant for electronic mobility. X-ray diffraction data show a characteristic profile of nanoscopic crystallite material (grain average size approximate to 5 nm) in agreement with this model. Temperature dependent and concentration dependent decays are measured and the capture barrier is evaluated from the model, yielding 100 meV for SnO2:0.1% Er and 148 meV for SnO2:4% Er.
Resumo:
Reactive pure and manganese-doped (5% and 10 at.%) ceria nanosized powders were prepared by the polymeric precursor technique. Physical properties of powder materials were studied by X-ray diffraction, nitrogen adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Characterization of powder compacts after fast firing at 1200 degrees C for 5 min was carried out by scanning electron microscopy and impedance spectroscopy measurements. The bulk apparent density of sintered pellets was determined for pellets of different compositions sintered at 1200 degrees C. A gradual decrease of the particle size occurs with increasing doping content. Relatively high values of apparent density were obtained after fast firing doped specimens at 1200 degrees C. DRIFT spectra evidence that a fraction of Mn ions was segregated onto particles surface. The electrical resistivity of sintered pellets reveals different mechanisms of conduction depending on the Mn content. (C) 2005 Elsevier B.V All rights reserved.
Resumo:
Siloxane-polyoxypropylene (PPO) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with different sodium salts NaX (X = ClO4, BF4 or I). The effect of the counter-ion (X) on the chemical environment of the sodium ions and on the ionic conductivity of these hybrids was investigated by Na-23 NMR, small angle X-ray scattering (SAXS), complex impedance, Raman spectroscopy and differential scanning calorimetry (DSC). Results reveal that the different sodium salts have essentially the same effect on the nanoscopic structure of the hybrids. The formation of immobile Na+ cations involved in NaCl-like species could be minimized by using a low amount of HCl as hydrolytic catalyst. The differences in the ionic conductivity of hybrids doped with different sodium salts were correlated with the proportion of Na ions solvated by ether-type oxygen of the polymeric chains and by the carboxyl oxygen located in the urea groups of the PPO chain extremities. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We use the QCD pomeron model proposed by Landshoff and Nachtmann to compute the differential and the total cross-sections for pp scattering in order to discuss a QCD-based approach to the proton form factor. This model is quite dependent on the experimental electromagnetic form factor, and it is not totally clear why this form factor gives good results even at moderate transferred momentum. We exchange the electromagnetic form factor by the asymptotic QCD proton form factor determined by Brodsky and Lepage (BL) plus a prescription for its low energy behavior dictated by the existence of a dynamically generated gluon mass. We fit the data with this QCD inspired form factor and a value for the dynamical gluon mass consistent with the ones determined in the literature. Our results also provide a determination of the proton wave function at the origin, which appears in the BL form factor.
Resumo:
The temperature dependence of the electrical conductivity and the F-19 nuclear magnetic resonance (NMR) of PbGeO3-PbF2CdF, glasses and glass ceramics are investigated. The measured conductivity values of the glasses are above 10(-5) Skin at 500 K, and increase with increasing lead fluoride content. Activation energies extracted from the conductivity data are in the range 0.59-0.73 eV. Results are consistent with the hypothesis that in these oxyfluoride glasses lead fluoride rich clusters are dispersed in a metagermanate based matrix providing increasing mobility pathways for conducting ions. The conductivity of a sample of the glass ceramic of composition (mol%) 60PbGeO(3-)20PbF(2)-20CdF(2) was found to be smaller than that in the corresponding glass, suggesting that there are poor ionic conducting regions in the interface between the nanometer sized crystals. The temperature dependence of the F-19 relaxation times, measured in the range 100-800 K, exhibit the qualitative features associated with high fluorine mobility in both, glass and glass ceramics materials. We suggest that de-convolution of the spin-lattice relaxation rates observed in the glass ceramics shows that the observed high temperature rate maximum is associated with the diffusional motions of the fluorine ions in beta-PbF2 crystals. (c) 2005 Elsevier B.V. All rights reserved.